
Lubomír Bulej
KDSS MFF UK

Instructions and compilation of basic
programming language constructs

Computer Systems

Executes a program
● Sequence of instructions stored in memory.
● Executes an instruction and moves to “next” one.

○ Does not “know” what it is doing,
nor “understands” the big picture.

Instructions are very simple
● Mostly operations on numbers.

Everything is encoded into numbers
● Not only the input and output data...

○ Text, images, music, 3D scene, ...
● … but also the program being executed!

2

Recall: computer is a machine

3

It is easy to see by formal-logical methods that there
exist certain [instruction sets] that are in abstract
adequate to control and cause the execution of any
sequence of operations…

… The really decisive considerations from the present
point of view, in electing an [instruction set], are more of
a practical nature: simplicity of the equipment demanded
by the [instruction set], and the clarity of its application to
the actually important problems together with the speed
of its handling of those problems.

– Burks, Goldstine, and von Neumann, 1947

What instructions are needed?

4

What is programming, really?

Shrink image
Delete paragraph

Play song
....

Semantic gap

Programming

0101001010010
0110101001101
0111010110101
....

Program

5

Bridging the semantic gap

Shrink image
...

Set font
document.par[i].value = ...;
document.setFont(...);

LW $16, 0($2)
MULI $2, $5, 4
ADD $2, $4, $2
SW $16, 0($2)
...

0110110110101
0101001010010
0110101001101
0111010110101
....

Compiler translates high-level programming
language into machine-specific assembly language.

Assembler translates assembly language into binary code chunks.
Linker merges binary code chunks into executable image.

6

There must certainly be instructions for
performing the fundamental arithmetic
operations.

– Burks, Goldstine, and von Neumann, 1947

Operations

7

Adding (two variables)
● The most basic of basic operations.
add a, b, c # a = b + c

● Add variables b and c and store result in a.
● One operation, always three variables.

○ Regularity helps make the hardware simple.

Adding three (four) variables
● Two (three) instructions needed
add a, b, c # a = b + c
add a, a, d # a = b + c + d
add a, a, e # a = b + c + d + e

Arithmetic operations

8

Simple expression
a = b + c;

d = a - e;

Corresponding MIPS assembly
add a, b, c # a = b + c

sub d, a, e # d = a - e

Compiling assignments (1)

9

Complex expression
f = (g + h) - (i + j);

● Compiler must break down the statement
into multiple assembly instructions.

Corresponding MIPS assembly
add t0, g, h # t0 = g + h
add t1, i, j # t1 = i + k
sub f, t0, t1 # f = t0 - t1

● Programmer only deals with the 5 variables.
● Compiler determines where to store the

(temporary) intermediate results.

Compiling assignments (2)

10

Instruction operands restricted to registers
● Limited number of special locations in the

hardware visible to programmer.
○ 32 on the MIPS architecture.
○ More than 16-32 not necessarily better. Why?

● The size of a register is limited as well.
○ 32 bits (word) on the 32-bit MIPS architecture.

Effective use of registers critical to performance
● Compiler allocates registers as necessary to

hold different values at different stages of
program execution.

Operands

11

Register number in the instruction code
● 5 bits required to express registers 0 – 31.

Symbolic name in the assembly language
● Reflects agreed-upon usage of a register.
● $r0 ($zero) and $r31 ($ra) are special.

Referring to registers on the MIPS

Name Number Usage Name Number Usage

$zero 0 The constant value 0. $t8 – $t9 24 – 25 More temporaries.

$at 1 Reserved for assembler. $k0 – $k1 26 – 27 Reserved for OS kernel.

$v0 – $v1 2 – 3 Values of results and expressions. $gp 28 Global pointer.

$a0 – $a3 4 – 7 Function arguments. $sp 29 Stack pointer.

$t0 – $t7 8 – 15 Temporaries. $fp / $s8 30 Frame pointer (if used).

$s0 – $s7 16 – 23 Saved registers. $ra 31 Return address.

12

Complex expression
f = (g + h) - (i + j);

Corresponding MIPS assembly
● The compiler assigned variables f, g, h, i, and j

to registers $s0, $s1, $s2, $s3, and $s4.

add $t0, $s1, $s2 # $t0 = g + h
add $t1, $s3, $s4 # $t1 = i + k
sub $s0, $t0, $t1 # f = $t0 - $t1

Compiling assignments using registers

13

Everything is primarily kept in memory
● Variables and data structures contain more data

elements than there are registers in a computer.
○ Only small amount of data can be kept in registers.

Arithmetic operations only work with registers
● Data transfer instructions needed to transfer

data between memory and registers.
● Instructions must supply the memory address.
● Memory is a 1-dimensional array of bytes.

○ The address serves as a zero-based index.
○ 32-bit word addresses must be aligned to 4 bytes.

Memory operands

14

Load/store word
● lw $rd, imm16 ($rs)

R[rd] = M[R[rs] + signext32 (imm16)]

● sw $rt, imm16 ($rs)
M[R[rs] + signext32 (imm16)] = R[rt]

Load/store byte
● lb $rd, imm16 ($rs)

R[rd] = signext32 (M[R[rs] + signext32 (imm16)][7:0])

● lbu $rd, imm16 ($rs)
R[rd] = zeroext32 (M[R[rs] + signext32 (imm16)][7:0])

● sb $rt, imm16 ($rs)
M[R[rs] + signext32 (imm16)][7:0] = R[rt][7:0]

Data transfer instructions
1 addressing mode:

Base address in
register, immediate
offset in instruction.

15

Program fragment
int a[100];
g = h + a[8];

Corresponding MIPS assembly
● Variables g and h assigned to $s1 and $s2.
● The base (starting) address of array a is in $s3.
● The offset of a[8] is 8×sizeof(int)

lw $t0, 32 ($s3) # $t0 = a[8]
add $s1, $s2, $t0 # g = h + a[8]

Compiling using a memory operand

16

Program fragment
● Single assignment, two memory operands.
int a[100];
a[12] = h + a[8];

Corresponding MIPS assembly
● Variable h assigned to $s2.
● The base address of array a is in $s3.

lw $t0, 32 ($s3) # $t0 = a[8]
add $t0, $s2, $t0 # $t0 = h + a[8]
sw $t0, 48 ($s3) # a[12] = h + a[8]

Compiling using load and store

17

Avoid extra memory reads for (common) constants
● Incrementing/decrementing a loop control variable

or an index, initializing sums and products, …
○ Common values: 0, 1, -1, 2, … (constant structure sizes)

Immediate operands
● addi $rd, $rs, imm16

add immediate, R[rd] = R[rs] + signext32 (imm16)

● li $rd, imm32
load immediate, R[rd] = imm32

Zero is special (hardwired in $r0)
● move $rd, $rs = add $rd, $rs, $r0

R[rd] = R[rs]

Constant/immediate operands

18

Operations on bits and bit fields within words
● Isolating, setting, and clearing bits.

Bitwise operations
● and/or/xor/nor $rd, $rs, $rt

○ not $rd, $rs = nor $rd, $rs, $rs/$r0

● andi/ori/xori $rd, $rs, imm16
R[rd] = R[rs] and/or/xor zeroext32 (imm16)

Shift operations
● sll/slr $rd, $rs, shamt

shift logical left/right, R[rd] = R[rs] << / >> shamt

● sra $rd, $rs, shamt
shift arithmetic right, R[rd] = R[rs] >>> shamt

Logical operations

19

Program fragment
shamt = (insn & 0x000007C0) >> 6;

Corresponding MIPS assembly
● Variables shamt, insn assigned to $s1, $s2.

andi $t0, $s2, 0x7C0 # $t0 = insn & 0x7C0
srl $s1, $t0, 6 # shamt = $t0 >> 6

Compiling logical operations

20

Distinguishes computer from calculator
● Choose which instructions to execute based on

inputs and values created during computation.
○ Control statements in programming languages.

Conditional branches / jumps
● beq $rd, $rs, addr

branch if eq, if R[rs] == R[rt] then PC = addr else PC = PC + 4

● bne $rd, $rs, addr
branch not eq, if R[rs] <> R[rt] then PC = addr else PC = PC + 4

Unconditional jumps
● j addr

jump, PC = addr

Instructions for making decisions (1)

address
of next

instruction

21

Program fragment
if (i == j)

 f = g + h;
else

 f = g - h;

Corresponding MIPS assembly
bne $s3, $s4, Else # (i != j) ⇒ PC = Else
add $s0, $s1, $s2 # f = g + h
j End # PC = End

Else:
sub $s0, $s1, $s2 # f = g - h

End:
...

Compiling if-then-else statement

● Variables f, g, h, i, and j
assigned to registers $s0,
$s1, $s2, $s3, and $s4.

22

Program fragment
while (save[i] == k) do

 i = i + 1;

Corresponding MIPS assembly
● Variables i, k assigned to $s3, $s5, and the base address of

array save is in $s6.
Loop:

sll $t1, $s3, 2 # $t1 = i × 4
add $t1, $t1, $s6 # $t1 = &save[i]
lw $t0, 0 ($t1) # $t0 = save[i]
bne $t0, $s5, End # (save[i] != k) ⇒ PC = End
addi $s3, $s3, 1 # i = i + 1
j Loop # PC = Loop

End:

Compiling while loop

23

Set on less than
● Check all relations (together with beq/bne)

Signed variant
● slt $rd, $rs, $rt

if R[rs] <
s
 R[rt] then R[rd] = 1 else R[rd] = 0

● slti $rd, $rs, imm16
if R[rs] <

s
 signext32 (imm16) then R[rd] = 1 else R[rd] = 0

Unsigned variant
● sltu $rd, $rs, $rt

if R[rs] <
U
 R[rt] then R[rd] = 1 else R[rd] = 0

● sltiu $rd, $rs, imm16
if R[rs] <

U
 zeroext32 (imm16) then R[rd] = 1 else R[rd] = 0

Instructions for making decisions (2)

24

Program fragment
int i = 0;
do {

 i = i + 1;
} while (i < k);

Corresponding MIPS assembly
● Variables i, and k assigned to registers $s3, and $s5.

move $s3, $zero # i = 0
Loop:

addi $s3, $s3, 1 # i = i + 1
slt $t0, $s3, $s5 # $t0 = (i < k)
bne $t0, $zero, Loop # ($t0 != 0) ⇒ PC = Loop

End:

Compiling repeat-until loop

25

Program fragment

int a[5] = { 1, 2, 3, 4, 5 };

...

int s = 0;

for (int i = 0; i < 5; i++) {

s = s + a[i];

}

Compiling for loop (1)

26

Corresponding MIPS assembly
move $s2, $zero # s = 0
move $s1, $zero # i = 0
j Condition # PC = Condition

Body:
sll $t0, $s1, 2 # $t0 = i × 4
add $t0, $t0, $s0 # $t0 = &a[i]
lw $t1, 0 ($t0) # $t1 = a[i]
add $s2, $s2, $t1 # s = s + a[i]
addi $s1, $s1, 1 # i = i + 1

Condition:
slti $t2, $s1, 5 # $t2 = (i < 5)
bne $t2, $zero, Body # ($t2 != 0) ⇒ PC = Body

End:

Compiling for loop (2)

27

Fundamental tool for structuring programs
● Call from anywhere, with input parameters.
● Return to point of origin, with return value.
● One of the ways to abstraction and code reuse.

Basic steps to execute a routine
● Put parameters in a place accessible to routine.
● Transfer control to the routine code.
● Acquire storage needed for the routine.
● Perform the desired task.
● Put result in a place accessible to caller.
● Return control to point of origin.

Supporting procedures/functions (1)

28

Jump and link (call)
● jal addr

$ra = R[31] = PC + 4; PC = addr

● jalr $rs
jump and link register, $ra = R[31] = PC + 4; PC = R[rs]

Indirect jump / return
● jr $rs

jump register, PC = R[rs]

Registers used for calling routines
● First four arguments passed in $a0 – $a3
● Return value passed back in $v0 – $v1
● Address where to return passed in $ra ($r31)

Supporting procedures/functions (2)

address
of next

instruction

29

Program fragment
print (add_four (a, b, c, d));

Corresponding MIPS assembly
● Variables a, b, c, and d assigned to $s0, $s1, $s2, and $s3.

move $a0, $s0
move $a1, $s1
move $a2, $s2
move $a3, $s3
jal add_four
move $a0, $v0
jal print
...

Compiling simple function call

add_four:
add $v0, $a0, $a1
add $v1, $a2, $a3

 add $v0, $v0, $v1
jr $ra

print:
...
jr $ra

30

Mechanism to store register contents in memory
● Caller expects to find its own values in registers

after a routine returns.
● Routine works with more values than there are

registers available.
Mechanism to pass parameters through memory

● There may be more than 4 parameters.
Mechanism to return values through memory

● The returned value may be a structure.
Mechanism to acquire storage for local variables

● Loop control variables, temporaries, ...

Supporting procedures/functions (3)

31

In memory, but where?
● The location cannot be fixed, because any routine

can be called multiple times.
○ A routine can call itself, either directly, or transitively.
○ A routine can be called from multiple threads.

Stack data structure (Last In First Out)
● Stack pointer to the top of the stack

○ Address of last used memory location
● Push and pop operations

○ Decrement/increment stack pointer, store/retrieve value
● Access local data relative to stack pointer
● Fits the need to make nested function calls

Allocating local storage

32

Stack and register contents
● Before, during, and after routine call

Stack space allocation

High address

...

$sp
→

Saved return address

$sp
→

Saved return address

Saved registers (if any) Saved registers (if any)

Local variables (if any) Local variables (if any)

Function arguments (calling) Function arguments (called) Function arguments (calling)

$sp
→

Saved return address (if any)

Saved registers (if any)

Local variables (if any)

Function arguments (calling)

Low address

St
ac

k
fr

am
e

si
ze

St
ac

k
fr

am
e

si
ze

33

Program fragment
s = add_two (1, 2);

Corresponding MIPS assembly for the call
● Note: arguments would normally go only through registers.

addi $sp, $sp, -40 # Allocate stack frame (including space
... # for locals and all possible call arguments)
li $a1, 2
sw $a1, 4 ($sp) # Put 2nd parameter on stack
li $a0, 1
sw $a0, 0 ($sp) # Put 1st parameter on stack
jal add_two # Call (jump and link) the routine
...
addi $sp, $sp, 40 # Deallocate stack frame

Compiling a function call using stack

34

MIPS assembly for add_two()
● Note: saving $ra ($s0, $s1) is not strictly necessary.
● Note: arguments loaded from the caller’s stack frame.

add_two:
addi $sp, $sp, -12 # Allocate stack frame
sw $ra, 8 ($sp) # Store return address
sw $s1, 4 ($sp) # Save register $s1
sw $s0, 0 ($sp) # Save register $s0

lw $s0, 12 ($sp) # Load 1st argument from stack
lw $s1, 16 ($sp) # Load 2nd argument from stack
add $v0, $s0, $s1 # Calculate return value

... to be continued

Compiling a function using stack (1)

35

MIPS assembly for add_two()
... continued

lw $s0, 0 ($sp) # Restore register $s0
lw $s1, 4 ($sp) # Restore register $s1
lw $ra, 8 ($sp) # Restore return address
addi $sp, $sp, 12 # Deallocate stack frame
jr $ra # Return to caller

Compared to machines with HW stack support
● Stack frame (activation record) for each function is

allocated as a whole, $sp remains fixed after allocation.
○ Not incrementally using push instructions.

● Space for all possible arguments is part of the activation
record → not need to change $sp during execution.

Compiling a function using stack (2)

36

Stack and register contents
● Before, during, and after routine call

Stack allocation with frame pointer

High address

...

$fp
→

Saved return address
Saved frame pointer

$fp
→

Saved return address
Saved frame pointer

Old $sp
→

Saved registers(if any)

New $sp
→

Saved registers(if any)

Local variables (if any) Local variables (if any)

New $sp
→ Function arguments (calling) Function arguments

Old $sp
→ Function arguments (calling)

$fp
→

Saved return address
Saved frame pointer

$sp
→

Saved registers(if any)

Local variables (if any)

Function arguments (calling)

Low address

Caller pushes
arguments on the
stack (often using
push instructions)
just before the call

Caller “removes”
arguments from stack
by adjusting the stack
pointer. Can be done
by the callee before
returning if the
number of arguments
is known.

37

MIPS assembly for add_two()

add_two:
addi $sp, $sp, -4 # “Push” return address on stack
sw $ra, 0 ($sp) #
addi $sp, $sp, -4 # “Push” old frame pointer on stack
sw $fp, 0 ($sp) #
move $fp, $sp # Establish new frame pointer

addi $sp, $sp, -4 # Allocate the rest of the stack frame
sw $s0, -4 ($fp) # Save $s0 ($fp-based addressing)

lw $s0, 8 ($fp) # Load 1st argument ($fp-based addressing)
lw $s1, 12 ($fp) # Load 2nd argument ($fp-based addressing)
add $v0, $s0, $s1 # Calculate return value

... to be continued

Compiling with frame pointer (1)
sw $ra, -4 ($sp)
sw $fp, -8 ($sp)
addi $fp, $sp, -8
addi $sp, $sp, -12

38

MIPS assembly for add_two()
● Note: explicit stack adjustments intended to mimic function

prologue (push ebp; mov esp, ebp) and epilogue (mov ebp,
esp; pop ebp) typical for Intel.

... continued

lw $s0, -4 ($fp) # Restore $s0 ($fp-based addressing)
move $sp, $fp # Deallocate stack frame

lw $fp, 0 ($sp) # “Pop” frame pointer
addi $sp, $sp, 4 #
lw $ra, 0 ($sp) # “Pop” return address
addi $sp, $sp, 4 #
jr $ra # Return to caller

Compiling with frame pointer (2)

