Virtual Machines - history

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

IBM S/370 — 4381 (1983-1992)

i : : St L
4381 Model Group 24 (1988): 20 MHz dual CPU, 128KB cache, 64MB RAM, 890K USD (2M USD@2020)

(Technické muzeum v Brng, 2018) 2

IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)

(3D Rendering, Oliver.obi, 2013)

IBM S/370 - 145 (1971)

(3D Rendering, Oliver.obi, 2013) 4

Virtual Machines - history

» The first era of VM

(A

AD-772 §09 » 1972 - IBM VM for S/370
COMPUTER S¥oTeMs o T ES FOR VIRTUAL = Coexistence of different OSes
Robert P. Goldberg = Time-sharing and virtual memory
I darvard voiversicy for OSes not implementing them
| \ Yy, = Debugging of OSes
» Including a VM under a VM
(Prepared for:) » Every tenth S/370 used a VM
plectronie Sysweme Blviston » 1980...— Gradual decline

February 1973

= Mainframes overcome by cheaper
architectures (minicomputers, PC)

= New hardware did not support VM

= The growing dominance of Unix
e DISTRIBUTED BY:

= VM is a complication for inter-
process communication
National Teshaical Informatien Service

U. 5. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

\ J

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

VM - requirements

» Formal Requirements
for Virtualizable Third Generation Architectures

» Gerald J. Popek and Robert P. Goldberg, 1974

» Equivalence / Fidelity

= A program running under the VMM should exhibit a behavior essentially identical to
that demonstrated when running on an equivalent machine directly.

» Resource control / Safety
= The VMM must be in complete control of the virtualized resources

» Efficiency / Performance

= A statistically dominant fraction of machine instructions must be executed without
VMM intervention

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

CPU virtualization

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Types of Virtual Machine Systems

Example: VMWare ESXi Example: VMWare Workstation Player
Virtual Machine A Virtual Machine B : : VM A VM B
Process | Process Process | Process : ProcessIProcess ProcessIProcess
Kernel A Kernel B : Kernel A Kernel B

Process Hypervisor Hypervisor

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Host Kernel

CPU, I/O hardware CPU, I/O hardware

» Hypervisor on bare metal » Hypervisor above an host OS
» Hypervisor directly performs all » Hypervisor is a (privileged) process
hardware access (CPU - Often one per VM
configuration, 1/0) = 1/0 access performed by host kernel
* Requires device drivers = CPU control requires support from
= Complex but fast the host kernel (debugging services)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Beware

» Pictures like this are misleading

a ProcessIProcess ProcessIProcess :

Kernel A Kernel B

Process Hypervisor Hypervisor

Host Kernel

CPU, I/O hardware

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Beware

» The host kernel actually sees this:

Process

Host Kernel

CPU, 1/O hardware

» The CPU sees this:

Host Process Hyper Kernel A JProcess]Process Hyper

X . Kernel B | ProcesslProcess
Kernel visor visor

CPU, I/O hardware

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Flavors of Type 1 Hypervisors

Example: VMWare ESXi Example: Microsoft Windows + Hyper-V

Virtual Machine A Virtual Machine B
Process | Process Process | Process e ssas s mssagsnannnnnaaann,
i VM A VM B :
Kernel A Kernel B : | | -
- |Proc]Proc Proc}Proc| :
Kernel 0 Kernel A Kernel B | :

VMM (Virtual Machine Manager)
a.k.a. Hypervisor VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware CPU, I/O hardware
» Hypervisor performs /O » Hypervisor only controls CPU
= Requires device drivers tailored for » VM 0 aka Root partition
the hypervisor = Allowed to directly access 1/0
hardware

= Too costly development
= Standard OS with device drivers

» Hypervisor forwards 1/O requests

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Flavors of Type 2 Hypervisors

. Example: VMWare Workstation Player Example: Linux KVM
:___VMA VMB © _VMA_: _VMB_:
ProcessIProcess ProcessIProcess VM ProcIProc Proclproc
5 - | |ProcjProc : - :
: Kernel A Kernel B : Ctrl] | Kkernel A |:| Kernel B |:
Process Hypervisor Hypervisor
Host Kernel (includes Hypervisor)
Host Kernel

CPU, I/O hardware

‘ CPU, I/O hardware |

» Hypervisor above an host OS » Hypervisor integrated in kernel
» Hypervisor is a (privileged) process » Fast
= Often one per VM = No need to indirect CPU control via
= 1/0 access performed by host kernel kernel service
= CPU control requires support from » Complex and dangerous
the host kernel (debugging services) = Kernels were not designed for this

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Where is the difference? Only in the history.

Example: VMWare ESXi Example: Linux KVM

Virtual Machine A Virtual Machine B - VMA : VMB :
Process | Process Process | Process |: ProcjProc Proc] Proc
: VM| : : :

- | |ProcjProc - : :

Kernel A Kernel B 5 Ctrl - | Kernel A || Kernel B |:

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware ‘ CPU, I/O hardware |

Host Kernel (includes Hypervisor)

» Hypervisor does everything » Hypervisor implanted in kernel
» CPU control, time sharing, and 1/0 » CPU control, time sharing, and I/0
in the same project in the same project
» Complex and dangerous » Complex and dangerous

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

True virtualization

» True virtualization

..................... ‘A
: : » Three layers of software
: User process : : User mode
. V » Guest user processes
L Fmememeseeneeeed = Only user-mode CPU instructions
IIIIIIIIIIIIIIIIIIIIE? } Guest OS kernel
= All CPU instructions
0S kernel = Privileged mode expected
: Privileged = But shall not be granted
S ; i mode > Hypervisor
T = All CPU instructions
: | virtual CPU i: ,
] s = Exclusive control over the hardware
Hypervisor
» This picture is misleading
CPU

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

True virtualization

User mode Privileged mode instructions

CPU

» The correct picture

» All levels of the software directly interact with CPU by executing instructions
» OS kernels use privileged instructions

= We must not allow their direct execution (Popek-Goldberg: Safety)

= We must allow direct execution of the other instructions (Performance)

= OS kernel must run with a different privilege setting than the Hypervisor
» Compression of privileges

= Mapping of 3 privilege levels onto the 2 levels available in typical CPU

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

True virtualization

User process OS kernel Hypervisor
<piileged mode instractions >
D OITIITIITIITIY l'J's'é'r'Fﬁ'o'c'j'é'""""""') <"i5r'i'v'i'|'e'g'é'él">
CPU mode

» Trap-and-emulate (IBM 1972)

» OS kernels use privileged instructions but run in the user mode
= Every privileged instruction in the kernel causes a trap (synchronous interrupt)
= The hypervisor emulates the instruction
= The emulation allows verification of access rights, virtualization etc.
» Performance considerations
= Every syscall goes through hypervisor

= Every I/O instruction in kernel is emulated
S/370 had "channel programs" = single 1/0 instruction started the whole |/O operation

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

True virtualization

Privileged mode
Y N PP >

Root mode

» Intel/AMD root/non-root modes

» Control transferred between levels
= User -> Kernel: Simultaneously with switching CPU to the privileged mode
= SYSCALL, some synchronous (software) interrupts
= User/Kernel -> Hypervisor: VM Exit event = switch to hypervisor mode

= Asynchronous (hardware) interrupts
= Some synchronous (software) interrupts (e.g. page faults)

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Hardware support for virtualization —a new dimension of privilege

CPU =
T,’ application e, application E
I = process registers
g !
o :
% llll+ ------------------ ::
(e u oa
o : F
c . H
TP guestOS [T ..
a: kernel S >
n :- g
llllllllll : : " E
: i access =
- R control
) L. :
i (host app) : :
: ‘ privileged ‘
8 . reglfters <]
of VMM N
Lg (+ hOSt OS | TR 5
1 kernel) je- S
: >
; IIIIIIIIIIIIIIIII

Intel VT-x / AMD-V
» Details differ

,Root”“ mode

» Like a CPU without
virtualization

» Usable to run the
host OS

,Non-root”“ mode

» Limited access to
the privileged of the
CPU state

» Unwanted actions
cause ,VM exit“

Mode switch

» A part of the CPU
state is read
from/stored to
memory

» Address-space
switch included

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Approach to virtualization

Doﬂ\:\;ekt:::z\l/i;:at Does the CPU support Can the binary code of Is the emulation of
vl fsslare —> three privilege levels —> an unmodified kernel —> privileged instructions
etc.? run in the user mode? sufficiently fast?
processes?
Do we want to modify
the source code of the
kernel?
Hardware-based
Application virtualization Virtualization Para-virtualization Binary Translation Trap and Emulate
(chroot 1982) (Xen HVM 2005) (Xen 2003) (VMWare 1999) (IBM VM 1972)
(FreeBSD jall 2000) (VMWare 2006)
(Solaris Containers 2004)
(Docker 2013)

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtualization - history

» The second era of VM

>

v

v

v

v

1999 — VMWare Workstation

= Software virtualization
(Binary Translation)

= VMM as an app in Windows NT
2002 — VMWare ESX Server

= VMM replaces the host OS
2003 - Xen

= Para-virtualization

Host OS modified (in source code)
2007 = Linux KVM
= VMM integrated into the OS kernel
2008 — Microsoft Hyper-V
= VMM cooperates with the host OS

Non-cooperating guest OS possible

4

» The x86 is unsuitable for VM

Legacy of the Intel 80286 CPU

= 1982 —still in the first era of VM
The first mitigation attempts

= 2005 — Intel VT-x

= 2006 — AMD-V

Gradually improved performance
= Improved HW support

= Para-virtualization in critical OS
parts

Performance loss is now

insignificant for most applications

= Variations in performance too big

for Real-Time applications and
performance measurement

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

VMM implementation

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Para-virtualization

“machine A”

“machine B”

PB1 PB2

F— -'-'::::::::---é -_;';';';';';';':':':':'I:-:-:.._

OS kernel B

PpAl PiopA2 fid
OS kernel A
:| modified

T R

VM
Controller

VM 0OS
kernel

>

Para-virtualization

»

Lower layers of OS
kernels are modified

Instead of controlling
hardware, these
layers call the
hypervisor

Hypervisor (VMM)

»

Creates an illusion of
a machine dedicated
for each kernel

The illusion is not
perfect; difficult parts
replaced by
cooperation of the
modified kernel

VM controller

»

Provides
administrator control

VM OS kernel

»

Provides file and
network services for
the controller and
hypervisor

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

True virtualization

“machine A” : “machineB” » True virtualization

EIIIIIIIIE EIIIIIIIIE EIIIIIIIIE EIIIIIIIIE E:IIIIIIIIIIIIIIIII: Y OS kerne|5d|rect|y
VM work with virtual

: PA1 :: PA2 = :: PB1 :: PB2 : :: : CPUs and other HW
: : - D : :: Controller : .

Crereensl Bvevesrsd © Guesreeesd Beeesesesd DA : » Hypervisor (VMM)

"'::::::::::::::::::::"':'"'.:'.'.:'.:'.:'.:'.:'.::'.:'."":"_:::::::::::1:::"' > Creates an illusion of
. - a machine dedicated
for each kernel

VM 0OS
kernel

» Theillusion is perfect,
emulating every bit of
CPU and other HW

OS kernel A OS kernel B

: i » Modern physical
R T T t CPUs help creating
: this illusion

S L T I : » VM controller

» Provides
administrator control

» VM OS kernel

CPU » Provides file :_:md
network services for
the controller and
hypervisor

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Reality: Mixed true and para-virtualization

“machine A” : “machine B”

PA1 PA2 : PB1 : i PB2 VM
" Controller
OS kernel A OS kernel B o I F
— —— i ii vMos
virtual {: & = . virtual {1 I karnel
device [: i : device -
drivers drivers
Hypervisor
CPU

Hardware support
makes CPU
virtualization “easy”

» Negligible overhead

» Implementing a
hypervisor is still a
tremendous task

This does not apply

to most other HW

» OS kernels
“modified” by the
means of device
drivers

» Actions forwarded
to the VM 0OS

Fast communication
infrastructure

» Implemented in the
Hypervisor

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtualization of Virtual Memory

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtual memory in a physical computer

Virtual address space of a process

A B | C D E

< \ \
S~ \ \
— N N
____\'-——-r-h—~——_
\\ \\ e —

Physical address space \ \ T~

A 4 A 4 \
OS Y VA U D E X A

» All code works in a virtual address space, including the OS kernel

» OS defines the mapping of virtual to physical addresses (including for itself)

» Intel/AMD: 2 to 5 levels of page tables, stored in the physical memory
= CPU translates addresses using the TLB in most cases
= On a TLB miss, the CPU will read the page tables to fill the TLB
= On a page-table miss, the CPU will wake-up the OS by executing a synchronous interrupt

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Memory as seen by the hypervisor

Guest physical address space

N <
—— :\\\§\~\\N§\-\—_ ///
T T T T e T ——
Host physical address space 7 \' ~. \\‘ ~\

..................

» The hypervisor must allow co-existence of several VMs

» The physical address space of each VM is virtualized
» The mapping is defined by the hypervisor
» An equivalent of page mapping by an OS

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtual memory in a VM

Guest process virtual address space

A " c| D] E _
Qe \ e
~—_ \ \
—— N N
- _\-——-r- = _—
\\ NS T T ——— _
Guest physical address space - virtualized, \ \\\\
................................... v B PR
OS Y VA U D E X A
- e LR VNSNS AN AN SN
\\\\ \\\\ \\\N S //
—_— = _—— T e —
T T e e T T — —
Host physical address space 7 \' ~\ \\a =~
A D | OS Y VA

» A composition of two mappings
» The mapping defined by the guest OS for a process
» The guest-host mapping defined by the hypervizor

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtual memory in a VM — EPT (Intel) / NPT (AMD)

] | | | | |

sa|qe} abed jsang

sy LJ@

salqe)} abed pajsaN

|
*

» The CPU holds two mappings and performs the composition

» Each (guest-physical) address in the GPT (starting with the CR3) must be
translated by the NPT (to a host-physical address)

= For 5 levels, 25 memory-accesses required!
» The TLB stores the composed mapping

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Virtualization of I/O

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

|/O access in a physical computer

» App processes must
perform 1/0 by
grosmennenen invoking an kernel
- CPU syscall

app » The OS kernel
process communicates with

the 1/0 device
......... :) » 1/Oinstructions
: (privileged), or

/O » Memory-mapped
device I/O device
(protected by virtual
memory mapping)

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

|/O access in a VM — exclusive mode

app
process

OS kernel

VMM

CPU

/O
device

>

»

Privileged 1/0
instructions cause
synchronous
interrupts

Executed by an
instruction emulator
inthe VMM

Besides the I/O
device, the related
interrupt system
and/or DMA
controller must also
be virtualized

Exclusive mode

»

Only one VM can
access the device

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

|/O access in a VM — exclusive mode

app
process

OS kernel

VMM

CPU

/O
device

»

When the
communication with
the device (including
the DMA etc) is
possible using non-
privileged
instructions

= Memory-mapped
devices, or

= configurable access
into 1/O address
space

» Exclusive mode

»

Only one VM can
access the device

Suitable for the
host-OS running in a
privileged VM

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

|/O access in a VM — shared mode

» Access to thel/O
device caught and

.............. emulated by the
: CPU VMM
app » The emulation state
process is independent for

each VM

» The emulated type
of hardware does

mesenannn : not have to exactly
: : i match the physical
: OS kernel M ccoemeeeeeeeeeeeeeeeseeeen > : device

» Shared mode

» VMM extracts
logical actions from

. e ¥ the emulated virtual
virtual [L /0 devices
|/(:) B = e , The logical actions
device .l are performed by
[; the physical device

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

|/O access in a VM — shared mode, para-virtualization

app
process

modified
OS kernel

R
R

CPU

/O
zarizeni

» Guest OS modified

» Modified source
code, or

» adevice driver for a
non-existent device

» Advantages

» The modified guest
OS sends logical
commands instead
of physical I/O

» Emulation of I/O
instructions not
needed

» Single logical
command instead of
a sequence of 1/0
instructions

» Synchronization of
logical commands
from different VMs
is simpler

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

/O access in a VM — multi-port |/O device

» Non-privileged
access to 1/0

.............. » Configurable 1/0
: CPU space protection
required
app » Shared mode
process

» Thel/O device

: presents itself more
Sememmmmseaas than once in the I/O
. space - ports

» Thel/O device
maintains an
independent state

/0 for each port

device » Thel/O device
synchronizes logical
commands from the
ports on the shared
physical device

/O port I /O port

VMM

» Expensive hardware
Mostly NICs

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

VM-VMM Communication

(Example: Microsoft Hyper-V)

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Microsoft Hyper-V

Hyper-V High Level Architecture

Unenlightened

Enlightened Enlightened
Linux Child Partition

Root Partition
Windows
Child Partition Child Partition

VWMWPs
YMMS WMl User Applications User Applications User Applications
¥ v
Linux
VSps - VID VSCs/ICs VSCs/ICs
k 3 - L 2 L 3
/O WinHwv /O WinHv /O LinuxHw
Stack Stack - Stack :
L : I . Kernel
Drivers Drivers : Drivers
L J L v
vMBus ¥ *| yMBus .| VMBus
&

Ty 1

Partition Manager

Hypervisor Hypercalls MSRs APIC Scheduler Address Management
Processors Memory

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Partition
» A set of virtual processors and other hardware, plus its configuration
» Root partition — typically used to run the Host OS and VM Management

» Inter-partition messaging

» The hypervisor supports a simple message-based inter-partition
communication mechanism.

» Messages can be sent by the hypervisor to a partition or can be sent from one
partition to another.

» Guest Physical Address Space

» The GPA mappings are defined by the partition’s parent.
= At the time they are mapped, they are specified in terms of the parent’s GPA space.

» Guest Virtual Address Space
» The hypervisor exposes operations to flush the TLB (on one virtual processor).

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Virtual MSRs

= Physical MSRs used by Kernels to read/alter CPU configuration
» VMM emulates additional Machine Status Registers (MSR) not present in HW

= VMM-aware VM Kernel can read/write virtual MSRs to exchange configuration
information with VMM

» Emulation too slow for real communication

» Hypercall
» Call Hypervisor from Guest (privileged mode)

» Exposed as procedure call to a special guest-physical page
= Provided by Hypervisor on request from Guest (via a virtual MSR)
= VM Kernel must map the guest-physical page to a guest-virtual page

= The page contains either special instructions or nothing — both cases cause VM exit

» Arguments passed/returned in registers or VPAP

» Virtual Processor Assist Page (VPAP)

» Special guest-physical page per virtual processor (core/logical thread)

= Both Hypervisor and Guest can read/write

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Hypercall

Call Hypervisor from Guest (privileged mode)

v Vv

Exposed as procedure call to a special guest-physical page

v

Arguments passed/returned in registers or VPAP

v

One Hypercall may serve several logical requests

= Chained into an array of arguments

v

All Hypercalls return within 50 microseconds
= Avoids blocking in the Hypervisor (giant lock?)

= Longer requests serviced in continuation-style
= The Hypercall return address is set before the instruction that invoked it
= Arguments adjusted to indicate that part of the request is already done
On the next VM Entry, the Hypercall is entered again

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek

	Slide 1: Virtual Machines - history
	Slide 2: IBM S/370 – 4381 (1983-1992)
	Slide 3: IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)
	Slide 4: IBM S/370 - 145 (1971)
	Slide 5: Virtual Machines - history
	Slide 6: VM - requirements
	Slide 7: CPU virtualization
	Slide 8: Types of Virtual Machine Systems
	Slide 9: Beware
	Slide 10: Beware
	Slide 11: Flavors of Type 1 Hypervisors
	Slide 12: Flavors of Type 2 Hypervisors
	Slide 13: Where is the difference? Only in the history.
	Slide 14: True virtualization
	Slide 15: True virtualization
	Slide 16: True virtualization
	Slide 17: True virtualization
	Slide 18: Hardware support for virtualization – a new dimension of privilege
	Slide 19: Approach to virtualization
	Slide 20: Virtualization - history
	Slide 21: VMM implementation
	Slide 22: Para-virtualization
	Slide 23: True virtualization
	Slide 24: Reality: Mixed true and para-virtualization
	Slide 25: Virtualization of Virtual Memory
	Slide 26: Virtual memory in a physical computer
	Slide 27: Memory as seen by the hypervisor
	Slide 28: Virtual memory in a VM
	Slide 29: Virtual memory in a VM – EPT (Intel) / NPT (AMD)
	Slide 30: Virtualization of I/O
	Slide 31: I/O access in a physical computer
	Slide 32: I/O access in a VM – exclusive mode
	Slide 33: I/O access in a VM – exclusive mode
	Slide 34: I/O access in a VM – shared mode
	Slide 35: I/O access in a VM – shared mode, para-virtualization
	Slide 36: I/O access in a VM – multi-port I/O device
	Slide 37: VM-VMM Communication (Example: Microsoft Hyper-V)
	Slide 38: Microsoft Hyper-V
	Slide 39: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 40: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 41: Guest-to-Hypervisor Interface (Microsoft Hyper-V)

