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IBM S/370 — 4381 (1983-1992)

i : : St L
4381 Model Group 24 (1988): 20 MHz dual CPU, 128KB cache, 64MB RAM, 890K USD (2M USD@2020)

(Technické muzeum v Brng, 2018) 2



IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)

(3D Rendering, Oliver.obi, 2013)



IBM S/370 - 145 (1971)

(3D Rendering, Oliver.obi, 2013) 4



Virtual Machines - history

» The first era of VM

( A

AD-772 §09 » 1972 - IBM VM for S/370
COMPUTER S¥oTeMs o T ES FOR VIRTUAL = Coexistence of different OSes
Robert P. Goldberg = Time-sharing and virtual memory
I darvard voiversicy for OSes not implementing them
| \ Yy, = Debugging of OSes
» Including a VM under a VM
( Prepared for: ) » Every tenth S/370 used a VM
plectronie Sysweme Blviston » 1980...— Gradual decline

February 1973

= Mainframes overcome by cheaper
architectures (minicomputers, PC)

= New hardware did not support VM

= The growing dominance of Unix
e DISTRIBUTED BY:

= VM is a complication for inter-
process communication
National Teshaical Informatien Service

U. 5. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

\ J
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VM - requirements

» Formal Requirements
for Virtualizable Third Generation Architectures

» Gerald J. Popek and Robert P. Goldberg, 1974

» Equivalence / Fidelity

= A program running under the VMM should exhibit a behavior essentially identical to
that demonstrated when running on an equivalent machine directly.

» Resource control / Safety
= The VMM must be in complete control of the virtualized resources

» Efficiency / Performance

= A statistically dominant fraction of machine instructions must be executed without
VMM intervention
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CPU virtualization
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Types of Virtual Machine Systems

Example: VMWare ESXi Example: VMWare Workstation Player
Virtual Machine A Virtual Machine B : : VM A VM B
Process | Process Process | Process : ProcessIProcess ProcessIProcess
Kernel A Kernel B : Kernel A Kernel B

Process Hypervisor Hypervisor

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Host Kernel

CPU, I/O hardware CPU, I/O hardware

» Hypervisor on bare metal » Hypervisor above an host OS
» Hypervisor directly performs all » Hypervisor is a (privileged) process
hardware access (CPU - Often one per VM
configuration, 1/0) = 1/0 access performed by host kernel
* Requires device drivers = CPU control requires support from
= Complex but fast the host kernel (debugging services)
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Beware

» Pictures like this are misleading

a ProcessIProcess ProcessIProcess :

Kernel A Kernel B

Process Hypervisor Hypervisor

Host Kernel

CPU, I/O hardware
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Beware

» The host kernel actually sees this:

Process

Host Kernel

CPU, 1/O hardware

» The CPU sees this:

Host Process Hyper Kernel A JProcess]Process Hyper

X . Kernel B | ProcesslProcess
Kernel visor visor

CPU, I/O hardware
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Flavors of Type 1 Hypervisors

Example: VMWare ESXi Example: Microsoft Windows + Hyper-V

Virtual Machine A Virtual Machine B
Process | Process Process | Process e ssas s mssagsnannnnnaaann,
i VM A VM B :
Kernel A Kernel B : | | -
- |Proc]Proc Proc}Proc| :
Kernel 0 Kernel A Kernel B | :

VMM (Virtual Machine Manager)
a.k.a. Hypervisor VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware CPU, I/O hardware
» Hypervisor performs /O » Hypervisor only controls CPU
= Requires device drivers tailored for » VM 0 aka Root partition
the hypervisor = Allowed to directly access 1/0
hardware

= Too costly development
= Standard OS with device drivers

» Hypervisor forwards 1/O requests
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Flavors of Type 2 Hypervisors

. Example: VMWare Workstation Player Example: Linux KVM
:___VMA VMB © _VMA_: _VMB_:
ProcessIProcess ProcessIProcess VM ProcIProc Proclproc
5 - | |ProcjProc : - :
: Kernel A Kernel B : Ctrl] | Kkernel A |:| Kernel B |:
Process Hypervisor Hypervisor
Host Kernel (includes Hypervisor)
Host Kernel

CPU, I/O hardware

‘ CPU, I/O hardware |

» Hypervisor above an host OS » Hypervisor integrated in kernel
» Hypervisor is a (privileged) process » Fast
= Often one per VM = No need to indirect CPU control via
= 1/0 access performed by host kernel kernel service
= CPU control requires support from » Complex and dangerous
the host kernel (debugging services) = Kernels were not designed for this
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Where is the difference? Only in the history.

Example: VMWare ESXi Example: Linux KVM

Virtual Machine A Virtual Machine B - VMA : VMB :
Process | Process Process | Process |: ProcjProc Proc ] Proc
: VM| : : :

- | |ProcjProc - : :

Kernel A Kernel B 5 Ctrl - | Kernel A || Kernel B |:

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware ‘ CPU, I/O hardware |

Host Kernel (includes Hypervisor)

» Hypervisor does everything » Hypervisor implanted in kernel
» CPU control, time sharing, and 1/0 » CPU control, time sharing, and I/0
in the same project in the same project
» Complex and dangerous » Complex and dangerous
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True virtualization

» True virtualization

..................... ‘A
: : » Three layers of software
: User process : : User mode
. V » Guest user processes
L Fmememeseeneeeed = Only user-mode CPU instructions
IIIIIIIIIIIIIIIIIIIIE? } Guest OS kernel
= All CPU instructions
0S kernel = Privileged mode expected
: Privileged = But shall not be granted
S ; i mode > Hypervisor
T = All CPU instructions
: | virtual CPU i: ,
] s = Exclusive control over the hardware
Hypervisor
» This picture is misleading
CPU
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True virtualization

User mode Privileged mode instructions

CPU

» The correct picture

» All levels of the software directly interact with CPU by executing instructions
» OS kernels use privileged instructions

= We must not allow their direct execution (Popek-Goldberg: Safety)

= We must allow direct execution of the other instructions (Performance)

= OS kernel must run with a different privilege setting than the Hypervisor
» Compression of privileges

= Mapping of 3 privilege levels onto the 2 levels available in typical CPU
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True virtualization

User process OS kernel Hypervisor
<piileged mode instractions >
D OITIITIITIITIY l'J's'é'r'Fﬁ'o'c'j'é'""""""') <"i5r'i'v'i'|'e'g'é'él">
CPU mode

» Trap-and-emulate (IBM 1972)

» OS kernels use privileged instructions but run in the user mode
= Every privileged instruction in the kernel causes a trap (synchronous interrupt)
= The hypervisor emulates the instruction
= The emulation allows verification of access rights, virtualization etc.
» Performance considerations
= Every syscall goes through hypervisor

= Every I/O instruction in kernel is emulated
S/370 had "channel programs" = single 1/0 instruction started the whole |/O operation

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek



True virtualization

Privileged mode
Y N PP >

Root mode

» Intel/AMD root/non-root modes

» Control transferred between levels
= User -> Kernel: Simultaneously with switching CPU to the privileged mode
= SYSCALL, some synchronous (software) interrupts
= User/Kernel -> Hypervisor: VM Exit event = switch to hypervisor mode

= Asynchronous (hardware) interrupts
= Some synchronous (software) interrupts (e.g. page faults)
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Hardware support for virtualization —a new dimension of privilege

CPU =
T,’ application e, application E
I =  process registers
g !
o :
% llll+ ------------------ ::
(e u oa
o : F
c . H
TP guestOS [T ..
a: kernel S >
n :- ........... . g
llllllllll : : " E
: i access =
- R control
) L. :
i (host app) : :
: ‘ privileged ‘
8 . reglfters <]
of VMM N
Lg (+ hOSt OS | TR 5
1 kernel)  je- S
: >
; IIIIIIIIIIIIIIIII

Intel VT-x / AMD-V
» Details differ

,Root”“ mode

» Like a CPU without
virtualization

» Usable to run the
host OS

,Non-root”“ mode

» Limited access to
the privileged of the
CPU state

» Unwanted actions
cause ,VM exit“

Mode switch

» A part of the CPU
state is read
from/stored to
memory

» Address-space
switch included
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Approach to virtualization

Doﬂ\:\;ekt:::z\l/i;:at Does the CPU support Can the binary code of Is the emulation of
vl fsslare —> three privilege levels —> an unmodified kernel —> privileged instructions
etc.? run in the user mode? sufficiently fast?
processes?
Do we want to modify
the source code of the
kernel?
Hardware-based
Application virtualization Virtualization Para-virtualization Binary Translation Trap and Emulate
(chroot 1982) (Xen HVM 2005) (Xen 2003) (VMWare 1999) (IBM VM 1972)
(FreeBSD jall 2000) (VMWare 2006)
(Solaris Containers 2004)
(Docker 2013)
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Virtualization - history

» The second era of VM

>

v

v

v

v

1999 — VMWare Workstation

= Software virtualization
(Binary Translation)

= VMM as an app in Windows NT
2002 — VMWare ESX Server

= VMM replaces the host OS
2003 - Xen

= Para-virtualization

Host OS modified (in source code)
2007 = Linux KVM
= VMM integrated into the OS kernel
2008 — Microsoft Hyper-V
= VMM cooperates with the host OS

Non-cooperating guest OS possible

4

» The x86 is unsuitable for VM

Legacy of the Intel 80286 CPU

= 1982 —still in the first era of VM
The first mitigation attempts

= 2005 — Intel VT-x

= 2006 — AMD-V

Gradually improved performance
= Improved HW support

= Para-virtualization in critical OS
parts

Performance loss is now

insignificant for most applications

= Variations in performance too big

for Real-Time applications and
performance measurement
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VMM implementation
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Para-virtualization

“machine A”

“machine B”

PB1 PB2

F— -'-'::::::::---é -_;';';';';';';':':':':'I:-:-:.._

OS kernel B

PpAl PiopA2 fid
OS kernel A
:| modified

T R

VM
Controller

VM 0OS
kernel

>

Para-virtualization

»

Lower layers of OS
kernels are modified

Instead of controlling
hardware, these
layers call the
hypervisor

Hypervisor (VMM)

»

Creates an illusion of
a machine dedicated
for each kernel

The illusion is not
perfect; difficult parts
replaced by
cooperation of the
modified kernel

VM controller

»

Provides
administrator control

VM OS kernel

»

Provides file and
network services for
the controller and
hypervisor
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True virtualization

“machine A” :  “machineB” » True virtualization

EIIIIIIIIE EIIIIIIIIE EIIIIIIIIE EIIIIIIIIE E:IIIIIIIIIIIIIIIII: Y OS kerne|5d|rect|y
VM work with virtual

: PA1 :: PA2 = :: PB1 :: PB2 : :: : CPUs and other HW
: : - D : :: Controller : .

Crereensl Bvevesrsd © Guesreeesd Beeesesesd DA : » Hypervisor (VMM)

"'::::::::::::::::::::"':'"'.:'.'.:'.:'.:'.:'.:'.::'.:'."":"_:::::::::::1:::"' > Creates an illusion of
. - a machine dedicated
for each kernel

VM 0OS
kernel

» Theillusion is perfect,
emulating every bit of
CPU and other HW

OS kernel A OS kernel B

: i » Modern physical
R T T t CPUs help creating
: this illusion

S L T I : » VM controller

» Provides
administrator control

» VM OS kernel

CPU » Provides file :_:md
network services for
the controller and
hypervisor
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Reality: Mixed true and para-virtualization

“machine A” :  “machine B”

PA1 PA2 : PB1 : i PB2 VM
" Controller
OS kernel A OS kernel B o I F
—  —— i ii vMos
virtual {: & = . virtual {1 I karnel
device [: i : device -
drivers drivers
Hypervisor
CPU

Hardware support
makes CPU
virtualization “easy”

» Negligible overhead

» Implementing a
hypervisor is still a
tremendous task

This does not apply

to most other HW

» OS kernels
“modified” by the
means of device
drivers

» Actions forwarded
to the VM 0OS

Fast communication
infrastructure

» Implemented in the
Hypervisor
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Virtualization of Virtual Memory
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Virtual memory in a physical computer

Virtual address space of a process

A B | C D E

< \ \
S~ \ \
— N N
____\'-——-r-h—~——_
\\ \\ e —

Physical address space \ \ T~

A 4 A 4 \
OS Y VA U D E X A

» All code works in a virtual address space, including the OS kernel

» OS defines the mapping of virtual to physical addresses (including for itself)

» Intel/AMD: 2 to 5 levels of page tables, stored in the physical memory
= CPU translates addresses using the TLB in most cases
= On a TLB miss, the CPU will read the page tables to fill the TLB
= On a page-table miss, the CPU will wake-up the OS by executing a synchronous interrupt
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Memory as seen by the hypervisor

Guest physical address space

N <
—— :\\\§\~\\N§\-\—_ ///
T T T T e T ——
Host physical address space 7 \' ~. \\‘ ~\

..................

» The hypervisor must allow co-existence of several VMs

» The physical address space of each VM is virtualized
» The mapping is defined by the hypervisor
» An equivalent of page mapping by an OS
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Virtual memory in a VM

Guest process virtual address space

A " c| D] E _
Qe \ e
~—_ \ \
—— N N
- _\-——-r- = _—
\\ NS T T ——— _
Guest physical address space - virtualized, \ \\\\
................................... v B PR
OS Y VA U D E X A
- e LR VNSNS AN AN SN
\\\\ \\\\ \\\N S //
—_— = _—— T e —
T T e e T T — —
Host physical address space 7 \' ~\ \\a =~
A D | OS Y VA

» A composition of two mappings
» The mapping defined by the guest OS for a process
» The guest-host mapping defined by the hypervizor
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Virtual memory in a VM — EPT (Intel) / NPT (AMD)

] | | | | |

sa|qe} abed jsang

sy LJ@

salqe)} abed pajsaN

|
*

» The CPU holds two mappings and performs the composition

» Each (guest-physical) address in the GPT (starting with the CR3) must be
translated by the NPT (to a host-physical address)

= For 5 levels, 25 memory-accesses required!
» The TLB stores the composed mapping
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Virtualization of I/O
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|/O access in a physical computer

» App processes must
perform 1/0 by
grosmennenen invoking an kernel
- CPU syscall

app » The OS kernel
process communicates with

the 1/0 device
......... : ) » 1/Oinstructions
: (privileged), or

/O » Memory-mapped
device I/O device
(protected by virtual
memory mapping)
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|/O access in a VM — exclusive mode

app
process

OS kernel

VMM

CPU

/O
device

>

»

Privileged 1/0
instructions cause
synchronous
interrupts

Executed by an
instruction emulator
inthe VMM

Besides the I/O
device, the related
interrupt system
and/or DMA
controller must also
be virtualized

Exclusive mode

»

Only one VM can
access the device
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|/O access in a VM — exclusive mode

app
process

OS kernel

VMM

CPU

/O
device

»

When the
communication with
the device (including
the DMA etc) is
possible using non-
privileged
instructions

= Memory-mapped
devices, or

= configurable access
into 1/O address
space

» Exclusive mode

»

Only one VM can
access the device

Suitable for the
host-OS running in a
privileged VM
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|/O access in a VM — shared mode

» Access to thel/O
device caught and

.............. emulated by the
: CPU VMM
app » The emulation state
process is independent for

each VM

» The emulated type
of hardware does

mesenannn : not have to exactly
: : i match the physical
: OS kernel M ccoemeeeeeeeeeeeeeeeseeeen > : device

» Shared mode

» VMM extracts
logical actions from

. e ¥ the emulated virtual
virtual [L /0 devices
|/(:) B = e , The logical actions
device .l are performed by
[ ; the physical device
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|/O access in a VM — shared mode, para-virtualization

app
process

modified
OS kernel

R
R

CPU

/O
zarizeni

» Guest OS modified

» Modified source
code, or

» adevice driver for a
non-existent device

» Advantages

» The modified guest
OS sends logical
commands instead
of physical I/O

» Emulation of I/O
instructions not
needed

» Single logical
command instead of
a sequence of 1/0
instructions

» Synchronization of
logical commands
from different VMs
is simpler
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/O access in a VM — multi-port |/O device

» Non-privileged
access to 1/0

.............. » Configurable 1/0
: CPU space protection
required
app » Shared mode
process

» Thel/O device

: presents itself more
Sememmmmseaas than once in the I/O
. space - ports

» Thel/O device
maintains an
independent state

/0 for each port

device » Thel/O device
synchronizes logical
commands from the
ports on the shared
physical device

/O port I /O port

VMM

» Expensive hardware
Mostly NICs
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VM-VMM Communication

(Example: Microsoft Hyper-V)
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Microsoft Hyper-V

Hyper-V High Level Architecture

Unenlightened

Enlightened Enlightened
Linux Child Partition

Root Partition
Windows
Child Partition Child Partition

VWMWPs
YMMS WMl User Applications User Applications User Applications
¥ v
Linux
VSps - VID VSCs/ICs VSCs/ICs
k 3 - L 2 L 3
/O WinHwv /O WinHv /O LinuxHw
Stack Stack - Stack :
L : I . Kernel
Drivers Drivers : Drivers
L J L v
vMBus ¥ *| yMBus .| VMBus
&

Ty 1

Partition Manager

Hypervisor Hypercalls MSRs APIC Scheduler Address Management
Processors Memory
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Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Partition
» A set of virtual processors and other hardware, plus its configuration
» Root partition — typically used to run the Host OS and VM Management

» Inter-partition messaging

» The hypervisor supports a simple message-based inter-partition
communication mechanism.

» Messages can be sent by the hypervisor to a partition or can be sent from one
partition to another.

» Guest Physical Address Space

» The GPA mappings are defined by the partition’s parent.
= At the time they are mapped, they are specified in terms of the parent’s GPA space.

» Guest Virtual Address Space
» The hypervisor exposes operations to flush the TLB (on one virtual processor).

NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednarek



Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Virtual MSRs

= Physical MSRs used by Kernels to read/alter CPU configuration
» VMM emulates additional Machine Status Registers (MSR) not present in HW

= VMM-aware VM Kernel can read/write virtual MSRs to exchange configuration
information with VMM

» Emulation too slow for real communication

» Hypercall
» Call Hypervisor from Guest (privileged mode)

» Exposed as procedure call to a special guest-physical page
= Provided by Hypervisor on request from Guest (via a virtual MSR)
= VM Kernel must map the guest-physical page to a guest-virtual page

= The page contains either special instructions or nothing — both cases cause VM exit

» Arguments passed/returned in registers or VPAP

» Virtual Processor Assist Page (VPAP)

» Special guest-physical page per virtual processor (core/logical thread)

= Both Hypervisor and Guest can read/write
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Guest-to-Hypervisor Interface (Microsoft Hyper-V)

» Hypercall

Call Hypervisor from Guest (privileged mode)

v Vv

Exposed as procedure call to a special guest-physical page

v

Arguments passed/returned in registers or VPAP

v

One Hypercall may serve several logical requests

= Chained into an array of arguments

v

All Hypercalls return within 50 microseconds
= Avoids blocking in the Hypervisor (giant lock?)

= Longer requests serviced in continuation-style
= The Hypercall return address is set before the instruction that invoked it
= Arguments adjusted to indicate that part of the request is already done
On the next VM Entry, the Hypercall is entered again
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