
1NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtual Machines - history

IBM S/370 – 4381 (1983-1992)

2(Technické muzeum v Brně, 2018)

4381 Model Group 24 (1988): 20 MHz dual CPU, 128KB cache, 64MB RAM, 890K USD (2M USD@2020)

IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)

3(3D Rendering, Oliver.obi, 2013)

IBM S/370 - 145 (1971)

4(3D Rendering, Oliver.obi, 2013)

 The first era of VM

 1972 – IBM VM for S/370

▪ Coexistence of different OSes

▪ Time-sharing and virtual memory
for OSes not implementing them

▪ Debugging of OSes

▪ Including a VM under a VM

 Every tenth S/370 used a VM

 1980... – Gradual decline

▪ Mainframes overcome by cheaper
architectures (minicomputers, PC)

▪ New hardware did not support VM

▪ The growing dominance of Unix

▪ VM is a complication for inter-
process communication

Virtual Machines - history

5NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VM - requirements

6NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Formal Requirements
for Virtualizable Third Generation Architectures

 Gerald J. Popek and Robert P. Goldberg, 1974

 Equivalence / Fidelity

▪ A program running under the VMM should exhibit a behavior essentially identical to
that demonstrated when running on an equivalent machine directly.

 Resource control / Safety

▪ The VMM must be in complete control of the virtualized resources

 Efficiency / Performance

▪ A statistically dominant fraction of machine instructions must be executed without
VMM intervention

7NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU virtualization

Virtual Machine A Virtual Machine B

Type 1 (Bare Metal) Hypervisor
Example: VMWare ESXi

Type 2 (Hosted) Hypervisor
Example: VMWare Workstation Player

 Hypervisor on bare metal
 Hypervisor directly performs all

hardware access (CPU
configuration, I/O)
▪ Requires device drivers

▪ Complex but fast

 Hypervisor above an host OS
 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from
the host kernel (debugging services)

Types of Virtual Machine Systems

8NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor

Beware

9NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Pictures like this are misleading

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor

Beware

10NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 The host kernel actually sees this:

VM A

Process ProcessKernel A

CPU, I/O hardware

Process
Hyper
visor

VM B

Process ProcessKernel B

 The CPU sees this:

Process ProcessKernel A
Host

Kernel
Process Process ProcessKernel B

Hyper
visor

Hyper
visor

Hyper
visor

CPU, I/O hardware

Host Kernel

VM 0Virtual Machine A Virtual Machine B

Traditional
Example: VMWare ESXi

With root partition (Microsoft terminology)

Example: Microsoft Windows + Hyper-V

 Hypervisor performs I/O
▪ Requires device drivers tailored for

the hypervisor

▪ Too costly development

 Hypervisor only controls CPU
 VM 0 aka Root partition

▪ Allowed to directly access I/O
hardware

▪ Standard OS with device drivers

 Hypervisor forwards I/O requests

Flavors of Type 1 Hypervisors

11NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Proc Proc

Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Proc Proc

Kernel AKernel 0

VM
ctrl

Proc Proc

CPU, I/O hardware

Implemented in user-space
Example: VMWare Workstation Player

Implemented in a kernel
Example: Linux KVM

 Hypervisor integrated in kernel
 Fast

▪ No need to indirect CPU control via
kernel service

 Complex and dangerous
▪ Kernels were not designed for this

Flavors of Type 2 Hypervisors

12NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc

 Hypervisor above an host OS
 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from
the host kernel (debugging services)

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor

VM
Ctrl

Proc

Traditional type 1 hypervisor
Example: VMWare ESXi

Type 2 implemented in a kernel
Example: Linux KVM

 Hypervisor implanted in kernel

 CPU control, time sharing, and I/O
in the same project

 Complex and dangerous

Where is the difference? Only in the history.

13NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc
VM
Ctrl

Proc

Virtual Machine A Virtual Machine B

 Hypervisor does everything

 CPU control, time sharing, and I/O
in the same project

 Complex and dangerous

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

Hypervisor

User process

OS kernel

 True virtualization

 Three layers of software

 Guest user processes

▪ Only user-mode CPU instructions

 Guest OS kernel

▪ All CPU instructions

▪ Privileged mode expected

▪ But shall not be granted

 Hypervisor

▪ All CPU instructions

▪ Exclusive control over the hardware

 This picture is misleading

True virtualization

14NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

virtual CPU

User mode

Privileged
mode

HypervisorUser process OS kernel

 The correct picture
 All levels of the software directly interact with CPU by executing instructions

 OS kernels use privileged instructions
▪ We must not allow their direct execution (Popek-Goldberg: Safety)

▪ We must allow direct execution of the other instructions (Performance)

▪ OS kernel must run with a different privilege setting than the Hypervisor

 Compression of privileges
▪ Mapping of 3 privilege levels onto the 2 levels available in typical CPU

True virtualization

15NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

User mode Privileged mode instructions

HypervisorUser process OS kernel

 Trap-and-emulate (IBM 1972)
 OS kernels use privileged instructions but run in the user mode

▪ Every privileged instruction in the kernel causes a trap (synchronous interrupt)

▪ The hypervisor emulates the instruction

▪ The emulation allows verification of access rights, virtualization etc.

 Performance considerations

▪ Every syscall goes through hypervisor

▪ Every I/O instruction in kernel is emulated
▪ S/370 had "channel programs" = single I/O instruction started the whole I/O operation

True virtualization

16NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

Privileged mode instructions

User mode Privileged
mode

HypervisorUser process OS kernel

 Intel/AMD root/non-root modes

 Control transferred between levels

▪ User -> Kernel: Simultaneously with switching CPU to the privileged mode

▪ SYSCALL, some synchronous (software) interrupts

▪ User/Kernel -> Hypervisor: VM Exit event = switch to hypervisor mode

▪ Asynchronous (hardware) interrupts

▪ Some synchronous (software) interrupts (e.g. page faults)

True virtualization

17NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

User mode Privileged mode

Non-root mode Root mode

CPU  Intel VT-x / AMD-V

 Details differ

 „Root“ mode

 Like a CPU without
virtualization

 Usable to run the
host OS

 „Non-root“ mode

 Limited access to
the privileged of the
CPU state

 Unwanted actions
cause „VM exit“

 Mode switch

 A part of the CPU
state is read
from/stored to
memory

 Address-space
switch included

Hardware support for virtualization – a new dimension of privilege

18NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

application
process

guest OS
kernel

application
registers

access
control

(host app)

VMM
(+ host OS

kernel)

privileged
registers

P
L

=
3

P
L

=
0

P
L

=
3

P
L

=
0

ro
o

t
n

o
n

-r
o

o
t

h
o

st
 V

M
C

S
gu

es
t

V
M

C
S

V
M

 e
n

tr
y

V
M

 e
xi

t
V

M
 e

xi
t

Approach to virtualization

19NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Can the binary code of
an unmodified kernel
run in the user mode?

Is the emulation of
privileged instructions

sufficiently fast?

Does the CPU support
three privilege levels

etc.?

Do we want to modify
the source code of the

kernel?

Para-virtualization
(Xen 2003)

Binary Translation
(VMWare 1999)

Trap and Emulate
(IBM VM 1972)

Hardware-based
Virtualization

(Xen HVM 2005)
(VMWare 2006)

Do we believe that
the kernel can

sufficiently isolate
processes?

Application virtualization
(chroot 1982)

(FreeBSD jail 2000)
(Solaris Containers 2004)

(Docker 2013)

 The x86 is unsuitable for VM

 Legacy of the Intel 80286 CPU

▪ 1982 – still in the first era of VM

 The first mitigation attempts

▪ 2005 – Intel VT-x

▪ 2006 – AMD-V

 Gradually improved performance

▪ Improved HW support

▪ Para-virtualization in critical OS
parts

 Performance loss is now
insignificant for most applications

▪ Variations in performance too big
for Real-Time applications and
performance measurement

Virtualization - history

20NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 The second era of VM

 1999 – VMWare Workstation

▪ Software virtualization
(Binary Translation)

▪ VMM as an app in Windows NT

 2002 – VMWare ESX Server

▪ VMM replaces the host OS

 2003 – Xen

▪ Para-virtualization

▪ Host OS modified (in source code)

 2007 – Linux KVM

▪ VMM integrated into the OS kernel

 2008 – Microsoft Hyper-V

▪ VMM cooperates with the host OS

▪ Non-cooperating guest OS possible

21NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VMM implementation

PA1

OS kernel A

 Para-virtualization

 Lower layers of OS
kernels are modified

 Instead of controlling
hardware, these
layers call the
hypervisor

 Hypervisor (VMM)

 Creates an illusion of
a machine dedicated
for each kernel

 The illusion is not
perfect; difficult parts
replaced by
cooperation of the
modified kernel

 VM controller

 Provides
administrator control

 VM OS kernel

 Provides file and
network services for
the controller and
hypervisor

Para-virtualization

22NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

Hypervisor

“machine A” “machine B”

OS kernel B VM OS
kernel

modified modified

Hypervisor

PA1

OS kernel A

 True virtualization

 OS kernels directly
work with virtual
CPUs and other HW

 Hypervisor (VMM)

 Creates an illusion of
a machine dedicated
for each kernel

 The illusion is perfect,
emulating every bit of
CPU and other HW

 Modern physical
CPUs help creating
this illusion

 VM controller

 Provides
administrator control

 VM OS kernel

 Provides file and
network services for
the controller and
hypervisor

True virtualization

23NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

“machine A” “machine B”

OS kernel B
VM OS
kernel

virtual CPU virtual CPU virtual CPU

Hypervisor

PA1

OS kernel A

 Hardware support
makes CPU
virtualization “easy”

 Negligible overhead

 Implementing a
hypervisor is still a
tremendous task

 This does not apply
to most other HW

 OS kernels
“modified” by the
means of device
drivers

 Actions forwarded
to the VM OS

 Fast communication
infrastructure

 Implemented in the
Hypervisor

Reality: Mixed true and para-virtualization

24NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

“machine A” “machine B”

OS kernel B

VM OS
kernelvirtual

device
drivers

virtual
device
drivers

virtual CPU virtual CPU virtual CPU

25NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtualization of Virtual Memory

 All code works in a virtual address space, including the OS kernel

 OS defines the mapping of virtual to physical addresses (including for itself)
 Intel/AMD: 2 to 5 levels of page tables, stored in the physical memory

▪ CPU translates addresses using the TLB in most cases

▪ On a TLB miss, the CPU will read the page tables to fill the TLB

▪ On a page-table miss, the CPU will wake-up the OS by executing a synchronous interrupt

Virtual memory in a physical computer

26NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

AED

Physical address space

XOS

Virtual address space of a process

A B DC E

Y Z U

 The hypervisor must allow co-existence of several VMs

 The physical address space of each VM is virtualized

 The mapping is defined by the hypervisor

 An equivalent of page mapping by an OS

Memory as seen by the hypervisor

27NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Guest physical address space

Host physical address space

 A composition of two mappings

 The mapping defined by the guest OS for a process

 The guest-host mapping defined by the hypervizor

Virtual memory in a VM

28NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

AED

Guest physical address space - virtualized

XOS

A D

Host physical address space

OS

Guest process virtual address space

A B DC E

Y Z U

Y Z

 The CPU holds two mappings and performs the composition
 Each (guest-physical) address in the GPT (starting with the CR3) must be

translated by the NPT (to a host-physical address)
▪ For 5 levels, 25 memory-accesses required!

 The TLB stores the composed mapping

Virtual memory in a VM – EPT (Intel) / NPT (AMD)

29NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

30NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtualization of I/O

app
process

OS kernel

 App processes must
perform I/O by
invoking an kernel
syscall

 The OS kernel
communicates with
the I/O device

 I/O instructions
(privileged), or

 Memory-mapped
I/O device
(protected by virtual
memory mapping)

I/O access in a physical computer

31NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

I/O
device

 Privileged I/O
instructions cause
synchronous
interrupts

 Executed by an
instruction emulator
in the VMM

 Besides the I/O
device, the related
interrupt system
and/or DMA
controller must also
be virtualized

 Exclusive mode

 Only one VM can
access the device

I/O access in a VM – exclusive mode

32NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

I/O
device

app
process

OS kernel

VMM

CPU

 When the
communication with
the device (including
the DMA etc) is
possible using non-
privileged
instructions

▪ Memory-mapped
devices, or

▪ configurable access
into I/O address
space

 Exclusive mode

 Only one VM can
access the device

 Suitable for the
host-OS running in a
privileged VM

I/O access in a VM – exclusive mode

33NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

I/O
device

app
process

OS kernel

VMM

CPU

 Access to the I/O
device caught and
emulated by the
VMM

 The emulation state
is independent for
each VM

 The emulated type
of hardware does
not have to exactly
match the physical
device

 Shared mode

 VMM extracts
logical actions from
the emulated virtual
devices

 The logical actions
are performed by
the physical device

I/O access in a VM – shared mode

34NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VMM

app
process

virtual
I/O

device

OS kernel

CPU

I/O
device

 Guest OS modified

 Modified source
code, or

 a device driver for a
non-existent device

 Advantages

 The modified guest
OS sends logical
commands instead
of physical I/O

 Emulation of I/O
instructions not
needed

 Single logical
command instead of
a sequence of I/O
instructions

 Synchronization of
logical commands
from different VMs
is simpler

I/O access in a VM – shared mode, para-virtualization

35NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

app
process

modified
OS kernel

VMM

CPU

I/O
zařízení

 Non-privileged
access to I/O

 Configurable I/O
space protection
required

 Shared mode

 The I/O device
presents itself more
than once in the I/O
space - ports

 The I/O device
maintains an
independent state
for each port

 The I/O device
synchronizes logical
commands from the
ports on the shared
physical device

 Expensive hardware

▪ Mostly NICs

I/O access in a VM – multi-port I/O device

36NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

app
process

OS kernel

VMM

CPU

I/O
device

I/
O

 p
o

rt
I/

O
 p

o
rt

37NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VM-VMM Communication
(Example: Microsoft Hyper-V)

Microsoft Hyper-V

38NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

39NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Partition

 A set of virtual processors and other hardware, plus its configuration

 Root partition – typically used to run the Host OS and VM Management

 Inter-partition messaging
 The hypervisor supports a simple message-based inter-partition

communication mechanism.

 Messages can be sent by the hypervisor to a partition or can be sent from one
partition to another.

 Guest Physical Address Space
 The GPA mappings are defined by the partition’s parent.

▪ At the time they are mapped, they are specified in terms of the parent’s GPA space.

 Guest Virtual Address Space

 The hypervisor exposes operations to flush the TLB (on one virtual processor).

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

40NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Virtual MSRs
▪ Physical MSRs used by Kernels to read/alter CPU configuration

 VMM emulates additional Machine Status Registers (MSR) not present in HW

▪ VMM-aware VM Kernel can read/write virtual MSRs to exchange configuration
information with VMM

 Emulation too slow for real communication

 Hypercall
 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

▪ Provided by Hypervisor on request from Guest (via a virtual MSR)

▪ VM Kernel must map the guest-physical page to a guest-virtual page

▪ The page contains either special instructions or nothing – both cases cause VM exit

 Arguments passed/returned in registers or VPAP

 Virtual Processor Assist Page (VPAP)
 Special guest-physical page per virtual processor (core/logical thread)

▪ Both Hypervisor and Guest can read/write

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

41NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Hypercall

 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

 Arguments passed/returned in registers or VPAP

 One Hypercall may serve several logical requests

▪ Chained into an array of arguments

 All Hypercalls return within 50 microseconds

▪ Avoids blocking in the Hypervisor (giant lock?)

▪ Longer requests serviced in continuation-style

▪ The Hypercall return address is set before the instruction that invoked it

▪ Arguments adjusted to indicate that part of the request is already done

▪ On the next VM Entry, the Hypercall is entered again

	Slide 1: Virtual Machines - history
	Slide 2: IBM S/370 – 4381 (1983-1992)
	Slide 3: IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)
	Slide 4: IBM S/370 - 145 (1971)
	Slide 5: Virtual Machines - history
	Slide 6: VM - requirements
	Slide 7: CPU virtualization
	Slide 8: Types of Virtual Machine Systems
	Slide 9: Beware
	Slide 10: Beware
	Slide 11: Flavors of Type 1 Hypervisors
	Slide 12: Flavors of Type 2 Hypervisors
	Slide 13: Where is the difference? Only in the history.
	Slide 14: True virtualization
	Slide 15: True virtualization
	Slide 16: True virtualization
	Slide 17: True virtualization
	Slide 18: Hardware support for virtualization – a new dimension of privilege
	Slide 19: Approach to virtualization
	Slide 20: Virtualization - history
	Slide 21: VMM implementation
	Slide 22: Para-virtualization
	Slide 23: True virtualization
	Slide 24: Reality: Mixed true and para-virtualization
	Slide 25: Virtualization of Virtual Memory
	Slide 26: Virtual memory in a physical computer
	Slide 27: Memory as seen by the hypervisor
	Slide 28: Virtual memory in a VM
	Slide 29: Virtual memory in a VM – EPT (Intel) / NPT (AMD)
	Slide 30: Virtualization of I/O
	Slide 31: I/O access in a physical computer
	Slide 32: I/O access in a VM – exclusive mode
	Slide 33: I/O access in a VM – exclusive mode
	Slide 34: I/O access in a VM – shared mode
	Slide 35: I/O access in a VM – shared mode, para-virtualization
	Slide 36: I/O access in a VM – multi-port I/O device
	Slide 37: VM-VMM Communication (Example: Microsoft Hyper-V)
	Slide 38: Microsoft Hyper-V
	Slide 39: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 40: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 41: Guest-to-Hypervisor Interface (Microsoft Hyper-V)

