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Virtual Machines - history



IBM S/370 – 4381 (1983-1992)

2(Technické muzeum v Brně, 2018)

4381 Model Group 24 (1988): 20 MHz dual CPU, 128KB cache, 64MB RAM, 890K USD (2M USD@2020)



IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)

3(3D Rendering, Oliver.obi, 2013)



IBM S/370 - 145 (1971)

4(3D Rendering, Oliver.obi, 2013)



 The first era of VM

 1972 – IBM VM for S/370

▪ Coexistence of different OSes

▪ Time-sharing and virtual memory 
for OSes not implementing them

▪ Debugging of OSes

▪ Including a VM under a VM

 Every tenth S/370 used a VM

 1980... – Gradual decline

▪ Mainframes overcome by cheaper 
architectures (minicomputers, PC)

▪ New hardware did not support VM

▪ The growing dominance of Unix

▪ VM is a complication for inter-
process communication

Virtual Machines - history

5NSWI150 Virtualization and Cloud Computing  - 2023/2024 David Bednárek



VM - requirements
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 Formal Requirements
for Virtualizable Third Generation Architectures

 Gerald J. Popek and Robert P. Goldberg, 1974

 Equivalence / Fidelity

▪ A program running under the VMM should exhibit a behavior essentially identical to 
that demonstrated when running on an equivalent machine directly. 

 Resource control / Safety 

▪ The VMM must be in complete control of the virtualized resources

 Efficiency / Performance

▪ A statistically dominant fraction of machine instructions must be executed without 
VMM intervention
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CPU virtualization



Virtual Machine A Virtual Machine B

Type 1 (Bare Metal) Hypervisor
Example: VMWare ESXi

Type 2 (Hosted) Hypervisor
Example: VMWare Workstation Player

 Hypervisor on bare metal
 Hypervisor directly performs all 

hardware access (CPU 
configuration, I/O)
▪ Requires device drivers

▪ Complex but fast

 Hypervisor above an host OS
 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from 
the host kernel (debugging services)

Types of Virtual Machine Systems
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Beware
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 Pictures like this are misleading

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor



Beware
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 The host kernel actually sees this:

VM A

Process ProcessKernel A
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Hyper
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 The CPU sees this:

Process ProcessKernel A
Host 

Kernel
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visor

Hyper
visor

Hyper
visor

CPU, I/O hardware

Host Kernel



VM 0Virtual Machine A Virtual Machine B

Traditional
Example: VMWare ESXi

With root partition (Microsoft terminology)

Example: Microsoft Windows + Hyper-V

 Hypervisor performs I/O
▪ Requires device drivers tailored for 

the hypervisor

▪ Too costly development

 Hypervisor only controls CPU
 VM 0 aka Root partition

▪ Allowed to directly access I/O 
hardware

▪ Standard OS with device drivers

 Hypervisor forwards I/O requests

Flavors of Type 1 Hypervisors
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Implemented in user-space
Example: VMWare Workstation Player

Implemented in a kernel
Example: Linux KVM

 Hypervisor integrated in kernel
 Fast

▪ No need to indirect CPU control via 
kernel service

 Complex and dangerous
▪ Kernels were not designed for this

Flavors of Type 2 Hypervisors
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Traditional type 1 hypervisor
Example: VMWare ESXi

Type 2 implemented in a kernel
Example: Linux KVM

 Hypervisor implanted in kernel

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous

Where is the difference? Only in the history.
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 Hypervisor does everything

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous
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Hypervisor

User process

OS kernel

 True virtualization

 Three layers of software

 Guest user processes

▪ Only user-mode CPU instructions

 Guest OS kernel

▪ All CPU instructions

▪ Privileged mode expected

▪ But shall not be granted

 Hypervisor

▪ All CPU instructions

▪ Exclusive control over the hardware

 This picture is misleading

True virtualization
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HypervisorUser process OS kernel

 The correct picture
 All levels of the software directly interact with CPU by executing instructions

 OS kernels use privileged instructions
▪ We must not allow their direct execution (Popek-Goldberg: Safety)

▪ We must allow direct execution of the other instructions (Performance)

▪ OS kernel must run with a different privilege setting than the Hypervisor

 Compression of privileges
▪ Mapping of 3 privilege levels onto the 2 levels available in typical CPU

True virtualization
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CPU
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HypervisorUser process OS kernel

 Trap-and-emulate (IBM 1972)
 OS kernels use privileged instructions but run in the user mode

▪ Every privileged instruction in the kernel causes a trap (synchronous interrupt)

▪ The hypervisor emulates the instruction

▪ The emulation allows verification of access rights, virtualization etc.

 Performance considerations

▪ Every syscall goes through hypervisor

▪ Every I/O instruction in kernel is emulated
▪ S/370 had "channel programs" = single I/O instruction started the whole I/O operation

True virtualization
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HypervisorUser process OS kernel

 Intel/AMD root/non-root modes

 Control transferred between levels

▪ User -> Kernel: Simultaneously with switching CPU to the privileged mode

▪ SYSCALL, some synchronous (software) interrupts

▪ User/Kernel -> Hypervisor: VM Exit event = switch to hypervisor mode

▪ Asynchronous (hardware) interrupts

▪ Some synchronous (software) interrupts (e.g. page faults)

True virtualization
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CPU

User mode Privileged mode
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CPU  Intel VT-x / AMD-V

 Details differ

 „Root“ mode

 Like a CPU without 
virtualization

 Usable to run the 
host OS

 „Non-root“ mode

 Limited access to 
the privileged of the 
CPU state

 Unwanted actions 
cause „VM exit“

 Mode switch

 A part of the CPU
state is read 
from/stored to 
memory

 Address-space 
switch included

Hardware support for virtualization – a new dimension of privilege
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Approach to virtualization

19NSWI150 Virtualization and Cloud Computing  - 2023/2024 David Bednárek

Can the binary code of 
an unmodified kernel 
run in the user mode?

Is the emulation of 
privileged instructions 

sufficiently fast?

Does the CPU support 
three privilege levels 

etc.?

Do we want to modify 
the source code of the 

kernel?

Para-virtualization
(Xen 2003)

Binary Translation
(VMWare 1999)

Trap and Emulate
(IBM VM 1972)

Hardware-based 
Virtualization

(Xen HVM 2005)
(VMWare 2006)

Do we believe that 
the kernel can 

sufficiently isolate 
processes?

Application virtualization
(chroot 1982)

(FreeBSD jail 2000)
(Solaris Containers 2004)

(Docker 2013)



 The x86 is unsuitable for VM

 Legacy of the Intel 80286 CPU

▪ 1982 – still in the first era of VM

 The first mitigation attempts

▪ 2005 – Intel VT-x

▪ 2006 – AMD-V

 Gradually improved performance

▪ Improved HW support

▪ Para-virtualization in critical OS
parts

 Performance loss is now 
insignificant for most applications

▪ Variations in performance too big 
for Real-Time applications and 
performance measurement

Virtualization - history
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 The second era of VM

 1999 – VMWare Workstation

▪ Software virtualization
(Binary Translation)

▪ VMM as an app in Windows NT

 2002 – VMWare ESX Server

▪ VMM replaces the host OS

 2003 – Xen

▪ Para-virtualization

▪ Host OS modified (in source code)

 2007 – Linux KVM

▪ VMM integrated into the OS kernel

 2008 – Microsoft Hyper-V

▪ VMM cooperates with the host OS

▪ Non-cooperating guest OS possible
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VMM implementation



PA1

OS kernel A

 Para-virtualization

 Lower layers of OS 
kernels are modified

 Instead of controlling 
hardware, these 
layers call the 
hypervisor

 Hypervisor (VMM)

 Creates an illusion of 
a machine dedicated 
for each kernel

 The illusion is not 
perfect; difficult parts 
replaced by 
cooperation of the 
modified kernel

 VM controller

 Provides 
administrator control

 VM OS kernel

 Provides file and 
network services for 
the controller and 
hypervisor

Para-virtualization
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Hypervisor

PA1

OS kernel A

 True virtualization

 OS kernels directly 
work with virtual 
CPUs and other HW

 Hypervisor (VMM)

 Creates an illusion of 
a machine dedicated 
for each kernel

 The illusion is perfect, 
emulating every bit of 
CPU and other HW

 Modern physical 
CPUs help creating 
this illusion

 VM controller

 Provides 
administrator control

 VM OS kernel

 Provides file and 
network services for 
the controller and 
hypervisor

True virtualization
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Hypervisor

PA1

OS kernel A

 Hardware support 
makes CPU 
virtualization “easy”

 Negligible overhead

 Implementing a 
hypervisor is still a 
tremendous task

 This does not apply 
to most other HW

 OS kernels 
“modified” by the 
means of device 
drivers

 Actions forwarded 
to the VM OS

 Fast communication 
infrastructure

 Implemented in the 
Hypervisor

Reality: Mixed true and para-virtualization
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Virtualization of Virtual Memory



 All code works in a virtual address space, including the OS kernel

 OS defines the mapping of virtual to physical addresses (including for itself)
 Intel/AMD: 2 to 5 levels of page tables, stored in the physical memory

▪ CPU translates addresses using the TLB in most cases

▪ On a TLB miss, the CPU will read the page tables to fill the TLB

▪ On a page-table miss, the CPU will wake-up the OS by executing a synchronous interrupt

Virtual memory in a physical computer

26NSWI150 Virtualization and Cloud Computing  - 2023/2024 David Bednárek

AED

Physical address space

XOS

Virtual address space of a process

A B DC E

Y Z U



 The hypervisor must allow co-existence of several VMs

 The physical address space of each VM is virtualized

 The mapping is defined by the hypervisor

 An equivalent of page mapping by an OS

Memory as seen by the hypervisor
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Guest physical address space

Host physical address space



 A composition of two mappings

 The mapping defined by the guest OS for a process

 The guest-host mapping defined by the hypervizor

Virtual memory in a VM
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 The CPU holds two mappings and performs the composition
 Each (guest-physical) address in the GPT (starting with the CR3) must be 

translated by the NPT (to a host-physical address)
▪ For 5 levels, 25 memory-accesses required!

 The TLB stores the composed mapping

Virtual memory in a VM – EPT (Intel) / NPT (AMD)
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Virtualization of I/O



app 
process

OS kernel

 App processes must 
perform I/O by 
invoking an kernel 
syscall

 The OS kernel 
communicates with 
the I/O device

 I/O instructions
(privileged), or

 Memory-mapped 
I/O device 
(protected by virtual 
memory mapping)

I/O access in a physical computer

31NSWI150 Virtualization and Cloud Computing  - 2023/2024 David Bednárek

CPU
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device



 Privileged I/O 
instructions cause 
synchronous 
interrupts

 Executed by an 
instruction emulator
in the VMM

 Besides the I/O 
device, the related 
interrupt system 
and/or DMA
controller must also 
be virtualized

 Exclusive mode

 Only one VM can 
access the device

I/O access in a VM – exclusive mode
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 When the 
communication with 
the device (including 
the DMA etc) is 
possible using non-
privileged 
instructions

▪ Memory-mapped 
devices, or

▪ configurable access 
into I/O address 
space

 Exclusive mode

 Only one VM can 
access the device

 Suitable for the 
host-OS running in a 
privileged VM

I/O access in a VM – exclusive mode
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 Access to the I/O 
device caught and 
emulated by the 
VMM

 The emulation state 
is independent for 
each VM

 The emulated type 
of hardware does 
not have to exactly 
match the physical 
device

 Shared mode

 VMM extracts 
logical actions from 
the emulated virtual 
devices

 The logical actions 
are performed by 
the physical device

I/O access in a VM – shared mode
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 Guest OS modified

 Modified source 
code, or

 a device driver for a 
non-existent device

 Advantages

 The modified guest 
OS sends logical 
commands instead 
of physical I/O

 Emulation of I/O 
instructions not 
needed

 Single logical 
command instead of 
a sequence of I/O 
instructions

 Synchronization of 
logical commands 
from different VMs 
is simpler

I/O access in a VM – shared mode, para-virtualization
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 Non-privileged 
access to I/O

 Configurable I/O 
space protection 
required

 Shared mode

 The I/O device 
presents itself more 
than once in the I/O 
space - ports

 The I/O device 
maintains an 
independent state 
for each port

 The I/O device 
synchronizes logical 
commands from the 
ports on the shared 
physical device

 Expensive hardware

▪ Mostly NICs

I/O access in a VM – multi-port I/O device
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VM-VMM Communication
(Example: Microsoft Hyper-V)



Microsoft Hyper-V
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Guest-to-Hypervisor Interface (Microsoft Hyper-V)
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 Partition

 A set of virtual processors and other hardware, plus its configuration

 Root partition – typically used to run the Host OS and VM Management

 Inter-partition messaging
 The hypervisor supports a simple message-based inter-partition 

communication mechanism.

 Messages can be sent by the hypervisor to a partition or can be sent from one 
partition to another.

 Guest Physical Address Space
 The GPA mappings are defined by the partition’s parent.

▪ At the time they are mapped, they are specified in terms of the parent’s GPA space.

 Guest Virtual Address Space

 The hypervisor exposes operations to flush the TLB (on one virtual processor).



Guest-to-Hypervisor Interface (Microsoft Hyper-V)
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 Virtual MSRs
▪ Physical MSRs used by Kernels to read/alter CPU configuration

 VMM emulates additional Machine Status Registers (MSR) not present in HW

▪ VMM-aware VM Kernel can read/write virtual MSRs to exchange configuration 
information with VMM

 Emulation too slow for real communication

 Hypercall
 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

▪ Provided by Hypervisor on request from Guest (via a virtual MSR)

▪ VM Kernel must map the guest-physical page to a guest-virtual page

▪ The page contains either special instructions or nothing – both cases cause VM exit

 Arguments passed/returned in registers or VPAP

 Virtual Processor Assist Page (VPAP)
 Special guest-physical page per virtual processor (core/logical thread)

▪ Both Hypervisor and Guest can read/write 



Guest-to-Hypervisor Interface (Microsoft Hyper-V)
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 Hypercall

 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

 Arguments passed/returned in registers or VPAP

 One Hypercall may serve several logical requests

▪ Chained into an array of arguments

 All Hypercalls return within 50 microseconds

▪ Avoids blocking in the Hypervisor (giant lock?)

▪ Longer requests serviced in continuation-style

▪ The Hypercall return address is set before the instruction that invoked it

▪ Arguments adjusted to indicate that part of the request is already done

▪ On the next VM Entry, the Hypercall is entered again
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