David Bednarek

Computing in virtual environments

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

virtual

> virtual
" Merriam-Webster dictionary

> very close to being something without actually being it

> existing or occurring on computers or on the Internet

> from Latin virtus - strength, virtue

* from vir - man

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtual elements in computing

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtual elements in computing infrastructure

» Virtual memory

» 1962; in daily use since 1970s (IBM S/370 and many others)
» Always implemented in hardware, controlled by OS

» Virtual machines
» 1972 (IBM S/370), abandoned before 1990
» Revived in 1999 (VMWare at Intel/AMD x86)

» Originally implemented purely in software
= But co-developed with hardware in IBM S/370
= Specific hardware support in Intel/AMD CPUs since 2005

» Virtual disks
» 1974 (Unix)
» Originally implemented as block-device drivers (RAM-disks etc.)
» High-performance versions implemented in dedicated HW (RAID controllers)

» Virtual NICs, VLANSs, VPN, ...

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtual execution environments

» Virtual execution environment

» An environment in which a piece of software runs

» Different from the native environment for which the software was designed

Even if the software developers know that they are developing for a virtual
environment, they want to ignore the complexity of the target environment,
pretending that they develop for the plain old physical world

» Built upon some or all of the previously existing virtual technologies:

Virtual memory (always)

Virtual machines (sometimes; always in clouds) and/or containers
Virtual disks or virtual file systems

Virtual NICs (always)

VLANSs, VPNs (in large installations and clouds)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Motivation for virtualization

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Multi-tenant environments

» Tenant — a person/corporation using a set of services
» Different from the owner of the hardware

= A completely different (legal) person (a customer), or

= An organizational unit using services supplied by an IT department, etc.
» Multi-tenant environments

» Hardware resources shared among multiple tenants

» Tenants are not able to share resources voluntarily
= They usually do not know each other
= They don’t want to negotiate on resources

= Their software cannot be sufficiently customized to share resources
» Granularity of multi-tenant sharing
» A physical computer is often too big
= Load balancing may require fragments of the power of a physical computer

» Itis too difficult to reassign a physical computer to a different tenant

= Even if automated, such a reassignment may take hours

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Dependency hell

» A piece of software is not a single file or folder

» Executables are linked to dynamically-loaded libraries
= Referenced by a short name like “libcrt.so”
» An application is often divided into communicating processes
= Often because some parts of code cannot coexist inside the same executable
= Linked by named pipes or IP sockets, identified by file names, port numbers
» There are resources, configurations, data, multimedia, ...
= Stored as files somewhere, identified by relative/absolute file names
= Different systems have conflicting conventions
» All the constituents must have the same or compatible version

» Coexistence of two versions of the same software
» Needed if software A and B require different versions of software C

» A and B shall be configured so that they find different versions of C under the same
name
= Preparing such configurations is difficult
= Such configurations would deviate from system conventions (like /etc/*)
= Complex configurations may degrade performance (copying of large environments)
= There is often no configuration option at all

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Motivation for virtualization

» Problems

» Multi-tenancy
= Different tenants cannot share the same machine

» Dependency hell
= Often, different software of the same tenant cannot share the same machine

» At the same time, load-balancing requires sharing the same
machine between different tenants and/or software

» Solution: Virtualization
» Disconnect the notion of machine from the physical hardware

= A hardware machine may host multiple virtual machines
= Virtual machines may migrate across hardware machines

= Virtual machines may be easily stopped, created, destroyed, ...

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtualization granularity

» In the plain non-virtualized world, people think about machines
(physical computers)
= "] want to log into computer X"
= "] want to install software Y at computer X"
» The naming, addressing, configuration is mostly machine-centric
= machine:port addressing in TCP/UDP
= /usr/bin or "c:\Program Files" installations of software
= /Jetc/* or HKEY_LOCAL_MACHINE registry configurations of software
= machine-wide scope of "ps", /proc/*, ...
» This could have been done differently, but it was not
= Nobody is going to modify all the software built in the machine-centric era

= The people will not change either

» Result: we want to virtualize machines

= Creating an illusion of a complete computer

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Plain Old Execution Environment

» Naive picture

cevrersnraranenranann R, » Inreality
: : : » Processes directly
Process1 = = Process2 - interact with CPU
Q n : n
§ . and memory
t qEER » } I/O devices may
3 ’ | : directly interact with
OS kerne : memory
e e e e e e e e e : » There may be more
than one CPU in the
system
0 CPU
M
2
°
(4°)
: .
|/O devices
- outer world

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Plain Old Execution Environment

» Without virtualization, the separation
between processes is deemed insufficient

= Process 1 Process 2 _ _ _ _
. : » Operating systems (since Unix) are built to
EIIIIIIIIIIIIIIIIIIII -IIIIIIIIIIIIIIIIIIII: faCilitateinter-processCommunication
.III=
: : » Processes on the same machine compete
: 0S kernel : for resources (memory, CPUs)
. » Processes share global name spaces (file
:III' names’ port numbers, UIDS' ..')
» In theory, communication, competition
CPU and access are limited by priority,
environment, and access-rights
mechanisms
1/O devices » Nobody believes that these old
mechanisms are sufficient against modern
gFEEERE riSkS
: : » Access rights cannot solve naming conflicts
outer world = Cannot have two web servers on port 80
= Cannot have two gcc versions with the same

Jusr/include

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Flavors of virtualization

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtualization at different layers

ATTTTTTTTTPTTTIPrrre . » Containerization

» OS kernel improved so that it now offers

Process different views (via the same interface) for
E IIIIIIIIIIIIIIIIIIII . different processes
UL containerization » Para-virtualization
» Lower layers of OS kernel modified so that
multiple kernels may coexist on the same
: CPU
: OS kernel _ ot » (True) virtualization
lll: lllllllllllllllllll illll r‘ _Vlr IZ I n . .

. . para-virtualizatio » Hardware support in CPU and/or emulation
by software enables coexistence of multiple
unmodified OS kernels on the same CPU

---------------------------- (true) V|rtuallzat|0n
» Originally, these were three independent
CPU approaches

» Today, the three approaches may share
some underlying hardware and/or
software technology

» They may coexist on the same machine

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtualization at different layers

» Qutcome of virtualization

» Aset of processes lives in an illusion that

Pl they are alone at a hardware machine

P2

S » In containerization, this illusion is created
............................ containerization by the 0S kernel

= The same kernel may be shared by several
such sets of processes

» In para- and true virtualization, also the OS
kernel lives in this illusion

STTN o ra-virtualization = OS kernels always need to feel alone

= |n para-virtualization, this applies only to the
upper, unmodified majority of the kernel

= Each such set of processes has its own kernel

---------------------------- (true) Vlrtuallzatlon

» For software developers, the outcome is
CPU almost identical for the three approaches

» For system maintenance, there is huge
difference between containerization and
virtualization

» Think about updates to the kernel(s)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtualization at different layers

P2

FEEEEEEEEEEEy
Y
=

............................ Containerization

OS kernel

===+ para-virtualization

SN NN NN NN NN NN EEEEEEEEEEES (true) Vlrtuallzatlon

CPU

» Containers vs. virtual machines

» Originally, containerization and
virtualization were completely independent
techniques

» Now, they often share parts of the
underlying technology

= Some container systems use hardware-based
isolation developed for virtual machines

= Some virtual machine systems use software
tricks developed for containers

= There are interfaces/libraries/apps capable of
controlling both containers and virtual
machines

» There is still a fundamental difference:
» Containers

= Only one instance of OS kernel per hw
machine

= Shared among all containers
» Virtual machines

= Each virtual machine has its own instance of
OS kernel

= More memory required
= |In addition, there may be a host OS kernel

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Virtual Machines vs. Containers

............................ e I LTI T T T T T LT T T T T Y T T PN
Virtual Machine A Virtual Machine B : Container A Container B
Process | Process E Process | Process Process | Process Process | Process

Al A2 i Bl B2 Al A2 Bl B2
Kernel A E Kernel B x U
A : A Kernel

» Inherent safety

= Kernel-HW interface was not
designed for Kernel-Kernel
communication

= VMM adds well-controled holes
into a natural barrier

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

» Limited safety

= Process-Kernel interface was
designed for Process-Process
communication

= Containerization requires blocking
existing communication channels

Virtual Machines vs. Containers

Container B

Virtual Machine A Virtual Machine B : : Container A

: H
E init essesi init essesi init || serv § ices é proc fesses E proc fesses
Kernel A E Kernel B
i Kernel
a.k.a. Hypervisor » Services shared among containers

= Dependency hell still present

» Each VM is a complete OS = Processes inside containers usually
cannot control services outside

containers - their install scripts
cannot run inside containers

= Each VM runs its services in specific
settings

= User (admin) processes (e.g. install
scripts) can control services (edit
/etc/..., run systemctl, ...)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

Containers (Linux)

» There are conflicting philosophies with respect to containers

» Docker, Inc.: Containers are lightweight entities
= A container shall typically contain only one process

= Any connection between processes shall be handled outside the containers
= Use Kubernetes to orchestrate these connections

= To update the software in a container, drop the container and start another
= Due to robustness and load-balancing requirements, the container must survive this anyway

» Red Hat, Inc.: Containers are like computers
= Many applications consists of several processes
= apache, mysql, java, cron, ...
= The applications are published with a sophisticated installation script
= Nobody is going to rewrite installation scripts into Kubernetes configurations
= |nstallation scripts shall work inside containers
= Typical installation procedures shall work inside containers:
$ sudo yum install gcc

$ sudo yum upgrade

$ sudo systemctl enable sshd

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednarek

Plain vs. System Containers

- Container A : Container B : : ContainerA : ContainerB :
init || serv § ices E proc fesses E proc flesses E proc fesses proc essesE
Kernel Kernel

» Containeris not a complete OS | » System container resembles a

» Services shared among containers complete OS
» Dependency hell still present » Each container contains its service
= Processes inside containers usually manager (init)
cannot control services outside = Install scripts work inside containers

containers - install scripts cannot

. . » The illusion is not yet complete
run inside containers

= Certain privileges/capabilities/roles
are hardwired in Linux kernel and
denied for containers

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednarek

	Slide 1: David Bednárek Computing in virtual environments
	Slide 2: virtual
	Slide 3: Virtual elements in computing
	Slide 4: Virtual elements in computing infrastructure
	Slide 5: Virtual execution environments
	Slide 6: Motivation for virtualization
	Slide 7: Multi-tenant environments
	Slide 8: Dependency hell
	Slide 9: Motivation for virtualization
	Slide 10: Virtualization granularity
	Slide 11: Plain Old Execution Environment
	Slide 12: Plain Old Execution Environment
	Slide 13: Flavors of virtualization
	Slide 14: Virtualization at different layers
	Slide 15: Virtualization at different layers
	Slide 16: Virtualization at different layers
	Slide 17: Virtual Machines vs. Containers
	Slide 18: Virtual Machines vs. Containers
	Slide 19: Containers (Linux)
	Slide 20: Plain vs. System Containers

