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 Motivation

 Give each process its own environment

▪ Environment variables alone are not sufficient to solve the Dependency hell

▪ Incompatible versions of installed libraries

▪ Incompatible behavior of installed executables

▪ Unexpected system configuration stored in user-accessible files

▪ Some applications come from a different ecosystem

▪ Different conventions regarding the filesystem

▪ Different flavor of the OS

 Improve isolation between processes

▪ Processes may refuse to work with limited privileges

▪ Create an illusion that they have privileges they actually have not

▪ Avoid conflicts on well-known ports, implant a firewall between local processes

▪ Create virtual networks and link processes to virtual NICs

 Linux Containers are not the first attempt
 At least for some of the goals
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Subsystems in Microsoft Windows



Microsoft Windows NT 3.1 (1993)
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 (Windows) NT kernel was created to support several kinds of apps
 (IBM) OS/2

 (Microsoft) Windows 3.1 (binary compatible with non-NT “kernels”)

 Legacy 16-bit Windows and DOS

 POSIX

 The NT kernel always included support for namespace isolation and 
resource limiting
 In limited use before 2016

 Windows Subsystem for Linux (WSL, bash.exe) – 2016
 Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

 Windows Containers – 2016
 Part of the Docker team acquired by Microsoft in 2014

 Docker-like images and containers for running Windows processes

 Two modes of container execution

▪ Process Isolation – the Windows kernel provides isolation

▪ Hyper-V Isolation – each VM runs its own Windows Server kernel
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 Windows Subsystem for Linux
 WSL 1 (2016) - Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

▪ Uses NTFS – lower performance than Linux, faster sharing with Windows

 WSL 2 (April 2020) – Runs a true Linux kernel in a Hyper-V virtual machine
▪ Can support Linux containers

▪ Native unix FS – faster local files, slower access to host Windows files than in WSL 1

 Windows Containers
 Inside a container, only Windows Server environment is supported

 Process Isolation - the Windows kernel provides isolation
▪ Supported by Windows Server (since 2016), Windows 10 (since April 2020)

 Hyper-V Isolation – each VM runs its own Windows Server kernel
▪ Supported by Windows Server (since 2016), Windows 10 (since September 2018)

 May be managed by Azure versions of Docker, Kubernetes, etc.
▪ Management almost identical to Linux containers (when run inside Azure)

 Not nearly as successful as Linux containers
▪ 28K Windows vs. 3.5M Linux containers on hub.docker.com (October 2020)
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Containers
(Linux)



PA1

OS kernel

 Namespace 
separation

 The upper layer of 
the OS kernel filters 
the syscalls and 
maps all the 
identifiers from 
process-specific to 
system-wide naming 
spaces (and back)

 Resource separation

 The kernel maintains 
resource usage 
statistics for each 
set of processes and 
restricts them

 Container controller

 Optional 

 Privileged process 
used to setup the 
kernel maps and 
react to events

Containerization
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Containerization – machines vs. containers
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 Container (simplified definition)

 a file system plus a configuration

 when started, a configured command is 
executed

▪ it starts an executable from the internal file 
system

▪ this executable may later spawn more 
processes (via fork/exec/system)

 a running container may contain more than 
one process

 OS kernel can map several containers to 
the same system resources

 podman pod = set of containers

▪ all containers in a pod share the same NIC 
(and some other namespaces)

▪ each container has its own filesystem

 Some container systems allow direct 
access to host NIC 

 no virtual network/NAT = faster

 decreased safety and isolation
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 Linux namespaces 
 A namespace defines the mapping of identifiers

▪ from the local view of the process

▪ to the global identifiers used inside the kernel

▪ applied on each SYSCALL to translate local ids to global and back

▪ it may also define how new ids are created

▪ some namespaces (NET, CGROUP) also configure the behavior of the kernel

 cgroups
 A cgroup defines a unit of accounting

▪ Processes in a cgroup share the same pool of resources

▪ A cgroup may also define a policy applied by the kernel

 USER and PID namespaces and all cgroups form hierarchies
▪ The root namespace is the 1:1 mapping applied to the init process and others

▪ The root cgroup represents all the resources of the machine and kernel

▪ Child namespaces/cgroups are subsets of their parents, with elements renamed

 Other kinds of namespaces are not hierarchical
▪ Their elements may be unreachable from other namespaces



Linux namespaces

11NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The most important types of namespaces (in the order of appearance)
▪ Mount - mounts, i.e. the complete filesystem

▪ Linux 2.4.19 – August 2002

▪ UTS - machine name, OS version, etc.
▪ Linux 2.6.19 – November 2006

▪ IPC - ids of message queues, semaphores, shared memory
▪ Linux 2.6.19 – November 2006

▪ USER - user and group ids (numeric)
▪ Linux 2.6.23 – October 2007

▪ changed semantics in Linux 3.5 - Jul 2012, finished in Linux 3.8 - Feb 2013

▪ PID - process and thread ids (numeric)
▪ Linux 2.6.24 – January 2008

▪ Network - the complete configuration of networking (NICs, ports, routing, 
forwarding)
▪ Linux 2.6.29 – April 2009

▪ Cgroup - resource-sharing pool and the associated cgroup configuration
▪ Linux 4.6 – May 2016

▪ Time - adjustments to monotonic clock (to make container migration possible)
▪ Linux 5.6 - March 2020
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 cgroup version 1 was abandoned, version 2 is now in use

 a cgroup is a set of controllers and their configuration

▪ io – accessible bandwidth of block device I/O (since Linux 4.5)

▪ memory – process/kernel/swap memory (since Linux 4.5)

▪ pids – max number of processes/threads created (since Linux 4.5)

▪ perf_event – performance monitoring (since Linux 4.11)

▪ rdma – access to DMA resources in the kernel and the hardware (since Linux 4.11)

▪ cpu – CPU time allotment (since Linux 4.15)

▪ cpuset – set of CPU or NUMA nodes available (since Linux 5.0)

▪ freezer – suspending/restoring all processes in a cgroup (since Linux 5.2)

▪ hugetlb – allocation of huge TLB pages (since Linux 5.6)

 other features attached to a cgroup

▪ access to I/O devices

▪ packet filtering may be based on the id of the originating cgroup



Process (Linux)
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 A Linux process consists [mainly] of

 pid, parent pid

 effective uid, gid, capabilities, etc.

 attached namespaces (one namespace per each type of namespace)

 file descriptors (open files, pipes, semaphores, etc.)

 virtual memory

 state, CPU registers

 Processes are created by syscalls:

 fork – copy everything (except pid/parent pid and the return value from fork)

 clone – each of the constituents may be shared or copied or created new

▪ behavior controlled by flags

▪ example: sharing everything (except CPU registers) creates a thread

 The exec syscall is the only way to load an executable file
▪ it replaces actual virtual memory with the new code and data, resets state

▪ effective uid/gid/capabilities may change if the executable file has suid bit set
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 Linux namespaces are created by these syscalls:

 clone – for the namespace types selected by flags, new namespaces are 
created for the child process (the other types are shared)

 unshare – for the namespace types selected by flags, new namespaces are 
attached to the calling process (the previous namespaces are detached but 
continue to exist)

 The new namespaces 

▪ set as owned by the user namespace that

▪ was created by the same syscall (if there was one)

▪ was attached to the calling process before the syscall (otherwise)

▪ user and pid namespaces are permanently set as children of the namespaces of the 
same type attached to the calling process before the call

▪ the contents of the new namespaces after clone/unshare:

▪ user, network, and ipc namespaces are empty

▪ after clone, pid namespaces contain the newly created process with pid=1

▪ other namespace types (mount etc.) are copies of the previously attached namespaces
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The effect of clone on major namespaces
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 Namespace is discarded when
 No attached processes exist

 No child namespaces exist (for user and pid namespaces)

 No owned namespaces exist (for a user namespace)

 No bind mount exist that represents the namespace
▪ Namespaces are represented by /proc/<pid>/ns/* virtual files, these may be 

duplicated by bind-mounting elsewhere

 Setting the contents of the new namespaces
 may be performed by processes attached to

▪ the parent namespace of the same type

▪ the same namespace

 usually performed between clone/unshare and exec calls, i.e. by the same 
code that called clone/unshare
▪ this code is aware of both the existing parent and the desired child identifiers

 often performed by manipulating /proc/<pid>/* files
▪ other, namespace-specific ways exist (e.g. the MOUNT syscall)



Linux procfs
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 procfs filesystem (since 1984)
 usually mounted at /proc

▪ the contents reflects the pid namespace of the process that called mount

▪ must be mounted again inside a container

 contains virtual folders and files

▪ enables communication between the kernel and user processes
▪ reduces the number of syscalls required

▪ allows passing more than the 6 64-bit parameters/results of a syscall

▪ any access to /proc/* is done using universal OPEN/READDIR/READ/WRITE syscalls
▪ standard mechanism of file access rights applies

▪ READ/WRITE have a mechanism for large data transfers between process and kernel

 in procfs, each filename has its own READ/WRITE handler

▪ READ converts some kernel data to file contents, often in tab-separated decimal form

▪ WRITE (if enabled) analyzes the text and sets the kernel data
▪ often limited to single OPEN-WRITE-CLOSE syscall sequence

▪ disadvantage: the kernel contains code for producing/parsing text and numbers

 majority of the contents (but not all) presented as /proc/<pid>/*

▪ some folders/files are presented relative to the calling process, e.g. /proc/self

 example: the ps utility works by reading the virtual files in /proc 



Linux namespaces – capabilities

19NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Each process has a bit mask of (about 40) capabilities
▪ A fine-grained replacement (since 1999) for testing effective uid==0

▪ However, majority of privileged actions are still controlled by the CAP_SYS_ADMIN capability

▪ The capabilities are bound to the user namespace attached to the process
▪ Applicable to actions on and in namespaces owned by this user namespace

▪ The process that enters (by clone/unshare) a newly created user namespace
▪ Automatically holds all capabilities (wrt. this user namespace)
▪ It may propagate these capabilities to child processes
▪ It will lose the capabilities on exec, unless its effective uid (in its namespace) is zero

 User namespaces
▪ Any process can create a user namespace

▪ CAP_SETUID in the parent user namespace is required to setup a non-trivial user mapping
▪ CAP_SETUID normally allows impersonation of anyone in the same namespace (e.g. by sshd)
▪ the impersonation can also happen by mapping a user from a child user namespace

▪ non-CAP_SETUID-equipped processes can only setup a trivial user mapping
▪ map one (arbitrary) child uid to the effective uid of the process that created the namespace

 Non-user namespaces
▪ CAP_SYS_ADMIN is required to create a non-user namespace

▪ if a new user namespace is created by the same call, the capability is automatically assumed
▪ otherwise, the invoking process must have had that capability before

▪ A specific capability is required when 
▪ The id mapping associated with a namespace is defined (e.g. pid generators)
▪ Objects in the namespace are created (e.g. network devices) or modified (e.g. firewall rules) in such a way 

that may affects all processes in the namespaces



Linux namespaces – mapping uids and gids
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 Technically, uid and gid mapping is limited to a (small) set of intervals of uids/guids
mapped linearly from the child to the parent

▪ The mapping is defined by writing /proc/<pid>/{uid_map|gid_map}

▪ Unmapped child-namespace uids/gids cannot be used in any syscall (like setuid or chown)

▪ Unmapped parent-namespace uids/gids (e.g. from a file system) cannot be presented to 
processes in the child namespace
▪ Mapped as 65534 (usually decoded as "nobody" by /etc/passwd and /etc/group)

 Non-privileged processes may directly map only one child uid/gid
▪ This child uid/gid may be 0 ("root")

▪ It must be mapped to the effective uid/gid of the process that created the user 
namespace

 Indirect setup using newuidmap and newgidmap utilities
▪ Available to any user for any user namespace created by this user

▪ These executables have CAP_SETUID capability attached and may therefore setup 
arbitrary uid/gid mappings

▪ However, these utilities allow only mappings that 
▪ Map at most one child uid/gid to the uid/gid of the calling user
▪ All the other child uid/gid must map into the range(s) defined for the calling user by the 

/etc/subuid and /etc/subgid files
▪ In default settings, each standard user has 65536 additional uids and gids reserved by the 

/etc/sub*id files
▪ The rules ensure that different standard users can never use the same parent uids/gids
▪ The additional uids/gids are not present in the (parent mount namespace) /etc/passwd or 

/etc/groups; therefore, they are displayed numerically by utilities like ls



Linux namespaces – unshare utility
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 unshare utility can launch a new process into new namespaces

 Namespace creation controlled by command-line options

 User namespace - trivial mapping to self
[bednarek@rocky ~]$ unshare -c

 The above command launches bash into a new user namespace
[bednarek@rocky ~]$ ps -l
F S   UID     PID PPID C PRI  NI ADDR SZ WCHAN TTY          TIME CMD
0 S  1000  344957  344929  0  80   0 - 2267 - pts/3    00:00:00 bash
4 S  1000  350824  344957  0  80   0 - 2265 do_wai pts/3    00:00:00 bash
0 R  1000  350881  350824  0  80   0 - 2521 - pts/3    00:00:00 ps

▪ This namespace has trivial mapping of the current UID/GID to itself
[bednarek@rocky ~]$ cat /proc/$$/uid_map

1000       1000          1

▪ There is no new mount namespace - we can see the global filesystem
[bednarek@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 bednarek bednarek 4096 Oct 25 10:27 /home/bednarek

▪ However, unmapped global UIDs/GIDs are shown as nobody
[bednarek@rocky ~]$ ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root



unshare -c
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 User namespace - trivial mapping of local root to global self
[bednarek@rocky ~]$ unshare -r

 All the global user's processes are now shown with local UID=0

▪ We can see the parent bash because there is no new PID namespace
[root@rocky ~]# ps -l
F S   UID     PID PPID C PRI  NI ADDR SZ WCHAN TTY          TIME CMD
0 S     0  344957  344929  0  80   0 - 2267 - pts/3    00:00:00 bash
4 S     0  351664  344957  0  80   0 - 2265 do_wai pts/3    00:00:00 bash
0 R     0  351707  351664  0  80   0 - 2521 - pts/3    00:00:00 ps

▪ This namespace has trivial mapping of local 0 to the global UID/GID of the user
[root@rocky ~]# cat /proc/$$/uid_map

0       1000          1

▪ This user's files are now shown as owned by (local) root

▪ Actually, this is local UID/GID 0 incorrectly mapped through the global /etc/{passwd,group}
[root@rocky ~]# ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek

▪ The true global root is shown as nobody
[root@rocky ~]# ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root



unshare -r
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[bednarek@rocky ~]$ unshare -U

 Creates a new user namespace with no mapping 
[nobody@rocky ~]$ cat /proc/$$/uid_map

▪ Even the actual user is mapped to UID=65534 (nobody)
[nobody@rocky ~]$ ps -l
F S   UID     PID PPID C PRI  NI ADDR SZ WCHAN TTY          TIME CMD
0 S 65534  344957  344929  0  80   0 - 2267 - pts/3    00:00:00 bash
0 S 65534  352808  344957  0  80   0 - 2265 do_wai pts/3    00:00:00 bash
0 R 65534  352872  352808  0  80   0 - 2521 - pts/3    00:00:00 ps

 The mapping must be defined from a process in the parent namespace
▪ We need the SETUID capability in the parent user namespace

▪ We can map only to global UIDs/GIDs defined by /etc/{subuid,subgid}
[bednarek@rocky ~]$ grep bednarek /etc/subuid
bednarek:100000:65536

▪ The SETUID capability is attached to the newuidmap/newgidmap utilities
[bednarek@rocky ~]$ newuidmap 352808 0 1000 1 1 100001 999
[bednarek@rocky ~]$ newgidmap 352808 0 1000 1 1 100001 999

 Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map

0       1000          1
1     100001        999

[nobody@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek



unshare -u; newuidmap ...

26NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

PID MOUNT NETWORK

parent 
proc

child 
proc

/proc1111 2222

0 1000

/ eth0loopback

0

100001

1



Linux namespaces – unshare utility

27NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

[bednarek@rocky ~]$ unshare -U

▪ Creates a new user namespace with no mapping 

▪ The mapping must be defined from the parent process

▪ Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map

0       1000          1
1     100001        999

▪ Note: The "nobody" is still here because the bash was not told to update the prompt

▪ We can now use all local UIDs between 0 and 999
[nobody@rocky ~]$ mkdir test
[nobody@rocky ~]$ chown mail:mail test

▪ We can execute chown because we are local UID=0 and have the local SETUID capability
[nobody@rocky ~]$ ls -ld test
drwxr-xr-x. 2 mail mail 6 Oct 25 11:18 test

▪ Again, "mail" is mapped through global /etc/{passwd,group} to local UID=8, GID=12
[nobody@rocky ~]$ grep mail /etc/{passwd,group}
/etc/passwd:mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
/etc/group:mail:x:12:postfix

 In the global namespace, the folder is seen with the global UID/GID
[bednarek@rocky ~]$ ls -ld test
drwxr-xr-x. 2 100008 100012 6 Oct 25 11:18 test

▪ If the local UID=8, GID=12 were not mapped, the chown above would have failed



Linux namespaces – root-full vs. root-less containers

28NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Root-full container
▪ The initial process of the container runs with uid/gid == 0 (as seen inside the 

container)
▪ It also has all capabilities (wrt. objects in its namespaces)

 Created by root (sudo) user (of the parent namespace)
▪ 1:1 uid/gid mapping or no user namespace at all

▪ Dangerous, the only scenario available in the past

 Created by a non-privileged user
▪ uid/gid 0 in the container maps to the creator user/group

▪ other uids/gids in the container (if any) map to the creator's subuid/subgid set

 Root-less container
▪ All the processes of the container run with the same uid/gid != 0

▪ They have no capabilities (therefore unable to create/impersonate other uids/gids)

 Created by root (sudo) user (of the parent namespace)
▪ The only uid/gid mapped to a selected user/group

 Created by a non-privileged user
▪ The only uid/gid mapped to the creator user/group



Containers (Linux)
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 The namespaces and cgroups are relatively old mechanism of the kernel

 Some parts were significantly redefined or extended more recently

▪ PIDS, capabilities, ...

 Many container systems originally used older, less general kernel mechanisms

▪ Instead of using the mechanism of owner namespaces, docker does this:

▪ docker executable forwards the commands via a named pipe to the dockerd daemon

▪ dockerd daemon uses root privileges to manipulate the namespaces and cgroups

▪ Consequently, the safety of the system relies on the correctness of dockerd

▪ However, dockerd was later reimplemented to more modern techniques

▪ e.g. using crun/runc to actually start containers, not requiring root privileges

 Red Hat reacted by implementing podman, which implements docker
commands through the modern kernel mechanisms, bypassing any daemon



Containers (Linux)
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 There are conflicting philosophies with respect to containers

 Docker, Inc.: Containers are lightweight entities
▪ A container shall typically contain only one process

▪ Any connection between processes shall be handled outside the containers
▪ Use Kubernetes to orchestrate these connections

▪ To update the software in a container, drop the container and start another
▪ Due to robustness and load-balancing requirements, the container must survive this anyway

 Red Hat, Inc.: Containers are like computers
▪ Many applications consists of several processes

▪ apache, mysql, java, cron, ...

▪ The applications are published with a sophisticated installation script
▪ Nobody is going to rewrite installation scripts into Kubernetes configurations

▪ Installation scripts shall work inside containers

▪ Typical installation procedures shall work inside containers:
$ sudo yum install gcc
$ sudo yum upgrade
$ sudo systemctl enable sshd



Containers (Linux)
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 PID namespace

▪ This happens in a lightweight container without pid namespace, executing "bash":
# systemctl status

Failed to connect to bus: Operation not permitted

# sudo systemctl status

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: error in /etc/sudo.conf, line 0 while loading plugin "sudoers_policy"

sudo: /usr/libexec/sudo/sudoers.so must be owned by uid 0

sudo: fatal error, unable to load plugins

# ls /etc/sudo.conf -ln

-rw-r-----. 1 65534 65534 1786 Apr 24  2020 /etc/sudo.conf

# grep root\\\|65534 /etc/passwd

root:x:0:0:root:/root:/bin/bash

nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin

▪ The process PID=1 has two special roles
▪ it controls daemons – published via a named pipe as the systemctl command

▪ it collects zombies

▪ Inside a typical container, PID=1 is the main executable, often a shell
▪ it cannot respond to the systemctl request

▪ sudo refuses to work because the true owner of sudo.conf does not exist inside the USER 
namespace of the container

▪ the root of the container namespace is not configured to have sufficient privileges



Linux namespaces – unshare utility - pid namespace
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▪ Creating a new pid namespace - unsuccessful attempts
[bednarek@rocky ~]$ unshare -p
unshare: unshare failed: Operation not permitted

▪ Creating any namespace other than user namespace requires CAP_SYS_ADMIN

▪ We can acquire this capability by entering a new user namespace (here with -r)
[bednarek@rocky ~]$ unshare -r -p
-bash: fork: Cannot allocate memory
-bash-5.1# echo $$
373218

▪ A pid namespace requires a really new process, not just unsharing
[bednarek@rocky ~]$ unshare -r -p --fork
basename: missing operand
Try 'basename --help' for more information.
[root@rocky ~]# echo $$
1

▪ We are in the new pid namespace with PID=1
[root@rocky ~]# ps

PID TTY          TIME CMD
344957 pts/3    00:00:00 bash
373102 pts/3    00:00:00 unshare
373103 pts/3    00:00:00 bash
373148 pts/3    00:00:00 ps

▪ But ps is implemented using /proc, so we actually see the global processes

▪ Our bash with local PID=1 maps to global PID=373103



Linux namespaces – unshare utility - pid namespace
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▪ Creating a new pid namespace - the correct way
[bednarek@rocky ~]$ unshare -r -p --fork --mount-proc

▪ The --mount-proc switch mounts a new instance of procfs to /proc

▪ Before that, the utility created a new mount namespace
[root@rocky ~]# echo $$
1

▪ Our bash is running with local PID=1
[root@rocky ~]# ps -el
F S   UID     PID PPID C PRI  NI ADDR SZ WCHAN TTY          TIME CMD
4 S     0       1       0  0  80   0 - 2265 do_wai pts/3    00:00:00 bash
0 R     0      33       1  0  80   0 - 2521 - pts/3    00:00:00 ps

▪ We can't see any other processes than the PID=1 and the ps utility itself

 This is the minimum that a modern container system must do
▪ At least when system container (with PID=1 and UID=0) is required

▪ Create a user namespace and map UID=0 to the parent user

▪ Create a mount namespace
▪ Real containers would map their own filesystems here

▪ Fork a new process into a new pid namespace
▪ Mount a new procfs into /proc

▪ Real containers usually also create a network namespace
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Containerization – without network namespaces
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 Containers in host network namespace

 Containers share network stack with the 
host

▪ Potential port number conflicts

▪ Unsafe

 Called host mode in docker/podman
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Containerization – network namespaces
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 Network namespaces are created empty

 Devices, routing and firewall rules are 
bound to a NS

 veth – a pair of virtual Ethernet devices

 packets sent through one side are received 
on the other

 usually installed across network NS 
boundary

▪ privileges required in both namespaces

▪ non-root users must provide network 
access differently

 More than one container may reside in 
the same network namespace

 Shared network address

▪ Potentially conflicting ports

 Example: podman pod
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Containerization – network namespaces
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 Network namespaces are created empty
 Devices, routing and firewall rules are bound 

to a NS

 veth – a pair of virtual Ethernet devices
 packets sent through one side are received on 

the other

 The outer side of the veth pair
 Bridge mode of docked/podman

▪ Virtual bridge + routing involved

▪ Standard parts of linux kernel

 Virtual bridge 
▪ All outer sides of the veth pairs connected by a 

virtual bridge

▪ Represented in the root NS as cbr0

 Router + NAT
▪ Packets are routed between cbr0 and eth0

▪ Routing with NAT (usually the default)

▪ Containers have private addresses

▪ External access requires port forwarding

▪ Routing without NAT

▪ Containers have public addresses

▪ External access may be blocked by host 
firewall

 Visibility between containers
▪ Configured by host or NS firewall
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 Network namespaces are created empty

 Devices, routing and firewall rules are 
bound to a NS

 Non-privileged creator cannot create a veth
pair

▪ due to insufficient privilege in the root NS

 Non-privileged creator can create a TAP 
adapter

▪ using root privileges in the child NS

▪ the TAP adapter is connected to user-space 
stack

 slirp4netns

▪ an utility developed from slirp (1996)

▪ not seriously secure!

▪ receive/send Ethernet packets via a TAP

▪ send/receive unencapsulated TCP/UDP traffic

▪ using unprivileged TCP/UDP ports

▪ cannot use port < 1024

▪ in effect, similar to a NAT router

▪ but implemented quite differently

▪ no container-to-container traffic

▪ root-less container systems invoke this 
daemon automatically
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 The userspace layer of containers

 docker, podman, ...

 An image is essentially a read-only filesystem

▪ Plus some defaults and interface declarations

 A container is an image plus

▪ A writable layer above the image filesystem

▪ This is destroyed when the container is deleted (but survives stops)

▪ A set of mounts used to access some folders outside the container

▪ This can survive deleting and recreating the container (e.g., from an updated image)

▪ A set of ports mapped via virtual networks to the outside world

 A running container is

▪ A set of processes living in the namespace of the container

▪ Created by forking from a single process, usually the ENTRYPOINT defined in the image

▪ Optionally, stdin/stdout/stderr pipes attached to the processes



Container image
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 Container image
 Logically, a filesystem that will be visible to a container when it starts

▪ Additional folders are usually mounted into that filesystem
▪ Virtual filesystems, e.g. procfs mounted at /proc

▪ Selected host-filesystem folders to be read/written by the container

 Theoretically, the container may mount large parts of the host filesystem
▪ E.g. all the operating system executables like /usr/bin

▪ This is not the way how docker was designed to work
▪ The image usually contains a complete copy of an operating system (except the kernel)

 Images are large (minimum bare OS = ~30 MB compressed)
▪ Significant cost of storing and transporting images

 Many images are based on the same OS version
▪ OS+DataBase vs. OS+WebServer

▪ Significant parts of the filesystem are identical

 Identical parts shall be shared between images
▪ Implemented by creating and storing images by layers

▪ Not the best optimization possible

▪ ReadHat+Oracle shares nothing with Ubuntu+Oracle



Containers (Linux)
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 The image is created by adding layers
▪ To another image or to an empty filesystem ("FROM SCRATCH")

 Each layer can be
 A set of files copied from elsewhere

 The result of a command executed inside the partially built container
▪ A temporary container started as if the previous layers formed a complete image

▪ Anything written by the command is stored in a writable layer
▪ Files/folders may be added/modified/removed 

▪ When done, the writable layer is frozen to read-only

 Each layer is
 Identified by its checksum

 Usually stored/distributed as single file
▪ Often using tar+gzip

▪ The base layer may be taken directly from an OS distribution

 Layers of an image linked together by metadata files
 Usually conformant to the Open-Container-Initiative (OCI) standard



Containers (Linux)
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 Creating the filesystem from an image
 When a container is created and/or started

▪ Including the case of temporary containers during the creation of the image

 The tar(+gzip) format is too slow for execution
▪ Each layer is unzipped and untarred into:

▪ A subtree in the host filesystem, or

▪ A filesystem built inside a file in the host filesystem

 The layers (including the top-most writable one) must be combined:
 Flattening - before starting the container

▪ Applying changes by subsequent layers onto the base layer

▪ Slow container creation, high disk-space consumption, fast container execution

▪ Cannot easily extract the changes made by the container into a new layer

 Union filesystem – virtually, when the container runs
▪ A filesystem combining two other filesystems (e.g. overlayfs)

▪ Whiteout: deleting in the upper filesystem hides a file from the lower filesystem

▪ A container manager may share a read-only layer in more than one container

▪ Quicker container creation, low disk-space consumption, slower container execution



Containers (Linux)
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 Union filesystem

 A filesystem combining two other filesystems (e.g. overlayfs)

 Each layer may be
 A subtree of a physical (host) file system

 A separate file system over a virtual block device

▪ Usually implemented in a binary file

 Overlay FS, layer filesystems and virtual block devices
 Implemented in kernel when set up by privileged users

▪ Permissions and owner UID/GIDs stored within FS

▪ Container images cannot be shared between different host users

 Implemented in userspace when set up by root-less users

▪ Using Linux FUSE - FS requests redirected from kernel to user processes

▪ Permission checking delegated to the userspace component

▪ Container images may be shared if the layer FS is container-aware



FROM debian:trixie-slim

ENV NGINX_VERSION   1.29.2
ENV NJS_VERSION     0.9.3
ENV NJS_RELEASE     1~trixie
ENV PKG_RELEASE     1~trixie
ENV DYNPKG_RELEASE  1~trixie

RUN set -x \
&& groupadd --system --gid 101 nginx \
&& useradd --system --gid nginx --uid 101 nginx \
&& apt-get update \
&& apt-get install curl xsltproc nginx \

# … and a hundred of other statements

COPY docker-entrypoint.sh

ENTRYPOINT ["/docker-entrypoint.sh"]
EXPOSE 80
STOPSIGNAL SIGQUIT
CMD ["nginx", "-g", "daemon off;"]

 Dockerfile
 script to create a container image

▪ placed at the source folder

 direct filesystem modifications
▪ FROM - base image
▪ COPY - copy from source folder

 indirect filesystem modifications
▪ RUN

▪ create a writable layer on top
▪ run the specified command in 

WORKDIR
▪ freeze the writable layer

 setting startup process
▪ ENV – process environment

▪ For the next RUN or ENTRYPOINT

▪ ENTRYPOINT – process command

▪ CMD – default arguments
▪ May be modified when container starts

 metadata
▪ VOLUME – mount points

▪ EXPOSE – port list

▪ STOPSIGNAL – container stop

Creating images by docker
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 docker build

 read Dockerfile and other files

 pull base image from a registry

 produce container image

 docker image push/pull

 push/pull image to/from a registry

 docker create

 create a writable layer above an image

 link mount points as specified

 connect ports as specified

 the result is a stopped container

 docker start

 start the startup process

 docker exec

 implant another process into the 
container namespaces

 docker stop/kill

 image

 a combined filesystem

▪ sequence of layers (binary blobs)

▪ multiple images may share (lower) 
layers if created by the same 
commands

 environment, startup command, 
mounts, ports

 created by freezing a container

 container
 similar to an image

▪ the top filesystem layer is writable

 may be running as a subtree of 
processes

 namespaces and cgroups ensure 
the required execution 
environment

docker
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Containers and the outside world
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 Mount-points (VOLUME)
 When started, the internal mount-points are linked to files/folders on the host

▪ Specified by options for docker create etc.

 Main purpose: Long-term persistency of data

▪ Software in containers is usually updated by creating a new container from an updated 
image
▪ The updated image may be created from the same Dockerfile

▪ FROM and RUN commands may produce different outcome

▪ The writable layer of a container cannot be reattached to different underlying image

 Ports (EXPOSE)
 The ports where the servers inside the container listen

▪ Specified host NIC ports are forwarded (through NAT) to the EXPOSEd ports (associated to 
a virtual NIC of the container)
▪ Specified by options for docker create etc.

▪ Alternatively, the container may directly use the host NIC (deprecated)

 IPC
 Host’s named pipes, devices etc. may be exposed to the container

 stdin/stdout/stderr of the container may be connected to host

▪ docker run -it



services:
proxy:

image: nginx
volumes:
- type: bind

source: ./proxy/nginx.conf
target: /etc/nginx/conf.d/default.conf
read_only: true

ports:
- 8080:80

depends_on: 
- backend

backend:
build:
context: backend

volumes:
- db-data:/var/lib/postgresql/data

volumes:
db-data:

 docker-compose

 Built above docker

 Config: docker-compose.yaml

 Repository operations

▪ Get image from repository

▪ Build image

 Connecting containers to host

▪ volumes, ports

 Combining more containers 
together (services)

▪ Dependences

▪ Healthcheck, restart

docker-compose
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