
1NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers

Containers

2NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Motivation

 Give each process its own environment

▪ Environment variables alone are not sufficient to solve the Dependency hell

▪ Incompatible versions of installed libraries

▪ Incompatible behavior of installed executables

▪ Unexpected system configuration stored in user-accessible files

▪ Some applications come from a different ecosystem

▪ Different conventions regarding the filesystem

▪ Different flavor of the OS

 Improve isolation between processes

▪ Processes may refuse to work with limited privileges

▪ Create an illusion that they have privileges they actually have not

▪ Avoid conflicts on well-known ports, implant a firewall between local processes

▪ Create virtual networks and link processes to virtual NICs

 Linux Containers are not the first attempt
 At least for some of the goals

3NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Subsystems in Microsoft Windows

Microsoft Windows NT 3.1 (1993)

4NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers in Windows

5NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 (Windows) NT kernel was created to support several kinds of apps
 (IBM) OS/2

 (Microsoft) Windows 3.1 (binary compatible with non-NT “kernels”)

 Legacy 16-bit Windows and DOS

 POSIX

 The NT kernel always included support for namespace isolation and
resource limiting
 In limited use before 2016

 Windows Subsystem for Linux (WSL, bash.exe) – 2016
 Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

 Windows Containers – 2016
 Part of the Docker team acquired by Microsoft in 2014

 Docker-like images and containers for running Windows processes

 Two modes of container execution

▪ Process Isolation – the Windows kernel provides isolation

▪ Hyper-V Isolation – each VM runs its own Windows Server kernel

Containers in Windows

6NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Windows Subsystem for Linux
 WSL 1 (2016) - Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

▪ Uses NTFS – lower performance than Linux, faster sharing with Windows

 WSL 2 (April 2020) – Runs a true Linux kernel in a Hyper-V virtual machine
▪ Can support Linux containers

▪ Native unix FS – faster local files, slower access to host Windows files than in WSL 1

 Windows Containers
 Inside a container, only Windows Server environment is supported

 Process Isolation - the Windows kernel provides isolation
▪ Supported by Windows Server (since 2016), Windows 10 (since April 2020)

 Hyper-V Isolation – each VM runs its own Windows Server kernel
▪ Supported by Windows Server (since 2016), Windows 10 (since September 2018)

 May be managed by Azure versions of Docker, Kubernetes, etc.
▪ Management almost identical to Linux containers (when run inside Azure)

 Not nearly as successful as Linux containers
▪ 28K Windows vs. 3.5M Linux containers on hub.docker.com (October 2020)

7NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers
(Linux)

PA1

OS kernel

 Namespace
separation

 The upper layer of
the OS kernel filters
the syscalls and
maps all the
identifiers from
process-specific to
system-wide naming
spaces (and back)

 Resource separation

 The kernel maintains
resource usage
statistics for each
set of processes and
restricts them

 Container controller

 Optional

 Privileged process
used to setup the
kernel maps and
react to events

Containerization

8NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
container
controller

“machine A” “machine B”

ID/name map

System-wide kernel object tables

ID/name map

container Y container Zcontainer X

PA1

OS kernel

Containerization – machines vs. containers

9

 Container (simplified definition)

 a file system plus a configuration

 when started, a configured command is
executed

▪ it starts an executable from the internal file
system

▪ this executable may later spawn more
processes (via fork/exec/system)

 a running container may contain more than
one process

 OS kernel can map several containers to
the same system resources

 podman pod = set of containers

▪ all containers in a pod share the same NIC
(and some other namespaces)

▪ each container has its own filesystem

 Some container systems allow direct
access to host NIC

 no virtual network/NAT = faster

 decreased safety and isolation

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2

“machine A” “machine B”

ID/name map
ID/name

map

file-system
X

file-system
Y

ID/name
map

file-system
Z

virtual NIC
A

virtual NIC
B

Linux namespaces

10NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Linux namespaces
 A namespace defines the mapping of identifiers

▪ from the local view of the process

▪ to the global identifiers used inside the kernel

▪ applied on each SYSCALL to translate local ids to global and back

▪ it may also define how new ids are created

▪ some namespaces (NET, CGROUP) also configure the behavior of the kernel

 cgroups
 A cgroup defines a unit of accounting

▪ Processes in a cgroup share the same pool of resources

▪ A cgroup may also define a policy applied by the kernel

 USER and PID namespaces and all cgroups form hierarchies
▪ The root namespace is the 1:1 mapping applied to the init process and others

▪ The root cgroup represents all the resources of the machine and kernel

▪ Child namespaces/cgroups are subsets of their parents, with elements renamed

 Other kinds of namespaces are not hierarchical
▪ Their elements may be unreachable from other namespaces

Linux namespaces

11NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The most important types of namespaces (in the order of appearance)
▪ Mount - mounts, i.e. the complete filesystem

▪ Linux 2.4.19 – August 2002

▪ UTS - machine name, OS version, etc.
▪ Linux 2.6.19 – November 2006

▪ IPC - ids of message queues, semaphores, shared memory
▪ Linux 2.6.19 – November 2006

▪ USER - user and group ids (numeric)
▪ Linux 2.6.23 – October 2007

▪ changed semantics in Linux 3.5 - Jul 2012, finished in Linux 3.8 - Feb 2013

▪ PID - process and thread ids (numeric)
▪ Linux 2.6.24 – January 2008

▪ Network - the complete configuration of networking (NICs, ports, routing,
forwarding)
▪ Linux 2.6.29 – April 2009

▪ Cgroup - resource-sharing pool and the associated cgroup configuration
▪ Linux 4.6 – May 2016

▪ Time - adjustments to monotonic clock (to make container migration possible)
▪ Linux 5.6 - March 2020

Linux namespaces

12NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 cgroup version 1 was abandoned, version 2 is now in use

 a cgroup is a set of controllers and their configuration

▪ io – accessible bandwidth of block device I/O (since Linux 4.5)

▪ memory – process/kernel/swap memory (since Linux 4.5)

▪ pids – max number of processes/threads created (since Linux 4.5)

▪ perf_event – performance monitoring (since Linux 4.11)

▪ rdma – access to DMA resources in the kernel and the hardware (since Linux 4.11)

▪ cpu – CPU time allotment (since Linux 4.15)

▪ cpuset – set of CPU or NUMA nodes available (since Linux 5.0)

▪ freezer – suspending/restoring all processes in a cgroup (since Linux 5.2)

▪ hugetlb – allocation of huge TLB pages (since Linux 5.6)

 other features attached to a cgroup

▪ access to I/O devices

▪ packet filtering may be based on the id of the originating cgroup

Process (Linux)

13NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 A Linux process consists [mainly] of

 pid, parent pid

 effective uid, gid, capabilities, etc.

 attached namespaces (one namespace per each type of namespace)

 file descriptors (open files, pipes, semaphores, etc.)

 virtual memory

 state, CPU registers

 Processes are created by syscalls:

 fork – copy everything (except pid/parent pid and the return value from fork)

 clone – each of the constituents may be shared or copied or created new

▪ behavior controlled by flags

▪ example: sharing everything (except CPU registers) creates a thread

 The exec syscall is the only way to load an executable file
▪ it replaces actual virtual memory with the new code and data, resets state

▪ effective uid/gid/capabilities may change if the executable file has suid bit set

Linux namespaces

14NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Linux namespaces are created by these syscalls:

 clone – for the namespace types selected by flags, new namespaces are
created for the child process (the other types are shared)

 unshare – for the namespace types selected by flags, new namespaces are
attached to the calling process (the previous namespaces are detached but
continue to exist)

 The new namespaces

▪ set as owned by the user namespace that

▪ was created by the same syscall (if there was one)

▪ was attached to the calling process before the syscall (otherwise)

▪ user and pid namespaces are permanently set as children of the namespaces of the
same type attached to the calling process before the call

▪ the contents of the new namespaces after clone/unshare:

▪ user, network, and ipc namespaces are empty

▪ after clone, pid namespaces contain the newly created process with pid=1

▪ other namespace types (mount etc.) are copies of the previously attached namespaces

The effect of clone on major namespaces

15NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

p
ar

en
t

PID

PID

p
ar

en
t

MOUNT

MOUNT

co
p

y

NETWORK

NETWORK

owned by

parent
proc

child
proc

eff. uid

The effect of clone on major namespaces

16NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

p
ar

en
t

PID

PID

p
ar

en
t

MOUNT

MOUNT

co
p

y

NETWORK

NETWORK

owned by

parent
proc

child
proc

1

/proc1111 2222

0 1000

/

/proc/

eth0loopback

loopback

The copied /proc sees parent PID NS.
It must be remounted by a process
belonging to the child PID NS.

The child USER NS is empty.
It must be explicitly populated to
show valid uids, including the
effective uid of the child process.

Linux namespaces

17NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Namespace is discarded when
 No attached processes exist

 No child namespaces exist (for user and pid namespaces)

 No owned namespaces exist (for a user namespace)

 No bind mount exist that represents the namespace
▪ Namespaces are represented by /proc/<pid>/ns/* virtual files, these may be

duplicated by bind-mounting elsewhere

 Setting the contents of the new namespaces
 may be performed by processes attached to

▪ the parent namespace of the same type

▪ the same namespace

 usually performed between clone/unshare and exec calls, i.e. by the same
code that called clone/unshare
▪ this code is aware of both the existing parent and the desired child identifiers

 often performed by manipulating /proc/<pid>/* files
▪ other, namespace-specific ways exist (e.g. the MOUNT syscall)

Linux procfs

18NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 procfs filesystem (since 1984)
 usually mounted at /proc

▪ the contents reflects the pid namespace of the process that called mount

▪ must be mounted again inside a container

 contains virtual folders and files

▪ enables communication between the kernel and user processes
▪ reduces the number of syscalls required

▪ allows passing more than the 6 64-bit parameters/results of a syscall

▪ any access to /proc/* is done using universal OPEN/READDIR/READ/WRITE syscalls
▪ standard mechanism of file access rights applies

▪ READ/WRITE have a mechanism for large data transfers between process and kernel

 in procfs, each filename has its own READ/WRITE handler

▪ READ converts some kernel data to file contents, often in tab-separated decimal form

▪ WRITE (if enabled) analyzes the text and sets the kernel data
▪ often limited to single OPEN-WRITE-CLOSE syscall sequence

▪ disadvantage: the kernel contains code for producing/parsing text and numbers

 majority of the contents (but not all) presented as /proc/<pid>/*

▪ some folders/files are presented relative to the calling process, e.g. /proc/self

 example: the ps utility works by reading the virtual files in /proc

Linux namespaces – capabilities

19NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Each process has a bit mask of (about 40) capabilities
▪ A fine-grained replacement (since 1999) for testing effective uid==0

▪ However, majority of privileged actions are still controlled by the CAP_SYS_ADMIN capability

▪ The capabilities are bound to the user namespace attached to the process
▪ Applicable to actions on and in namespaces owned by this user namespace

▪ The process that enters (by clone/unshare) a newly created user namespace
▪ Automatically holds all capabilities (wrt. this user namespace)
▪ It may propagate these capabilities to child processes
▪ It will lose the capabilities on exec, unless its effective uid (in its namespace) is zero

 User namespaces
▪ Any process can create a user namespace

▪ CAP_SETUID in the parent user namespace is required to setup a non-trivial user mapping
▪ CAP_SETUID normally allows impersonation of anyone in the same namespace (e.g. by sshd)
▪ the impersonation can also happen by mapping a user from a child user namespace

▪ non-CAP_SETUID-equipped processes can only setup a trivial user mapping
▪ map one (arbitrary) child uid to the effective uid of the process that created the namespace

 Non-user namespaces
▪ CAP_SYS_ADMIN is required to create a non-user namespace

▪ if a new user namespace is created by the same call, the capability is automatically assumed
▪ otherwise, the invoking process must have had that capability before

▪ A specific capability is required when
▪ The id mapping associated with a namespace is defined (e.g. pid generators)
▪ Objects in the namespace are created (e.g. network devices) or modified (e.g. firewall rules) in such a way

that may affects all processes in the namespaces

Linux namespaces – mapping uids and gids

20NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Technically, uid and gid mapping is limited to a (small) set of intervals of uids/guids
mapped linearly from the child to the parent

▪ The mapping is defined by writing /proc/<pid>/{uid_map|gid_map}

▪ Unmapped child-namespace uids/gids cannot be used in any syscall (like setuid or chown)

▪ Unmapped parent-namespace uids/gids (e.g. from a file system) cannot be presented to
processes in the child namespace
▪ Mapped as 65534 (usually decoded as "nobody" by /etc/passwd and /etc/group)

 Non-privileged processes may directly map only one child uid/gid
▪ This child uid/gid may be 0 ("root")

▪ It must be mapped to the effective uid/gid of the process that created the user
namespace

 Indirect setup using newuidmap and newgidmap utilities
▪ Available to any user for any user namespace created by this user

▪ These executables have CAP_SETUID capability attached and may therefore setup
arbitrary uid/gid mappings

▪ However, these utilities allow only mappings that
▪ Map at most one child uid/gid to the uid/gid of the calling user
▪ All the other child uid/gid must map into the range(s) defined for the calling user by the

/etc/subuid and /etc/subgid files
▪ In default settings, each standard user has 65536 additional uids and gids reserved by the

/etc/sub*id files
▪ The rules ensure that different standard users can never use the same parent uids/gids
▪ The additional uids/gids are not present in the (parent mount namespace) /etc/passwd or

/etc/groups; therefore, they are displayed numerically by utilities like ls

Linux namespaces – unshare utility

21NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 unshare utility can launch a new process into new namespaces

 Namespace creation controlled by command-line options

 User namespace - trivial mapping to self
[bednarek@rocky ~]$ unshare -c

 The above command launches bash into a new user namespace
[bednarek@rocky ~]$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 1000 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
4 S 1000 350824 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 1000 350881 350824 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ This namespace has trivial mapping of the current UID/GID to itself
[bednarek@rocky ~]$ cat /proc/$$/uid_map

1000 1000 1

▪ There is no new mount namespace - we can see the global filesystem
[bednarek@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 bednarek bednarek 4096 Oct 25 10:27 /home/bednarek

▪ However, unmapped global UIDs/GIDs are shown as nobody
[bednarek@rocky ~]$ ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root

unshare -c

22NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

PID MOUNT NETWORK

parent
proc

child
proc

/proc1111 2222

0 1000

/ eth0loopback

1000

Linux namespaces – unshare utility

23NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 User namespace - trivial mapping of local root to global self
[bednarek@rocky ~]$ unshare -r

 All the global user's processes are now shown with local UID=0

▪ We can see the parent bash because there is no new PID namespace
[root@rocky ~]# ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 0 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
4 S 0 351664 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 0 351707 351664 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ This namespace has trivial mapping of local 0 to the global UID/GID of the user
[root@rocky ~]# cat /proc/$$/uid_map

0 1000 1

▪ This user's files are now shown as owned by (local) root

▪ Actually, this is local UID/GID 0 incorrectly mapped through the global /etc/{passwd,group}
[root@rocky ~]# ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek

▪ The true global root is shown as nobody
[root@rocky ~]# ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root

unshare -r

24NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

PID MOUNT NETWORK

parent
proc

child
proc

/proc1111 2222

0 1000

/ eth0loopback

0

Linux namespaces – unshare utility

25NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

[bednarek@rocky ~]$ unshare -U

 Creates a new user namespace with no mapping
[nobody@rocky ~]$ cat /proc/$$/uid_map

▪ Even the actual user is mapped to UID=65534 (nobody)
[nobody@rocky ~]$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 65534 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
0 S 65534 352808 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 65534 352872 352808 0 80 0 - 2521 - pts/3 00:00:00 ps

 The mapping must be defined from a process in the parent namespace
▪ We need the SETUID capability in the parent user namespace

▪ We can map only to global UIDs/GIDs defined by /etc/{subuid,subgid}
[bednarek@rocky ~]$ grep bednarek /etc/subuid
bednarek:100000:65536

▪ The SETUID capability is attached to the newuidmap/newgidmap utilities
[bednarek@rocky ~]$ newuidmap 352808 0 1000 1 1 100001 999
[bednarek@rocky ~]$ newgidmap 352808 0 1000 1 1 100001 999

 Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map

0 1000 1
1 100001 999

[nobody@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek

unshare -u; newuidmap ...

26NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

PID MOUNT NETWORK

parent
proc

child
proc

/proc1111 2222

0 1000

/ eth0loopback

0

100001

1

Linux namespaces – unshare utility

27NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

[bednarek@rocky ~]$ unshare -U

▪ Creates a new user namespace with no mapping

▪ The mapping must be defined from the parent process

▪ Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map

0 1000 1
1 100001 999

▪ Note: The "nobody" is still here because the bash was not told to update the prompt

▪ We can now use all local UIDs between 0 and 999
[nobody@rocky ~]$ mkdir test
[nobody@rocky ~]$ chown mail:mail test

▪ We can execute chown because we are local UID=0 and have the local SETUID capability
[nobody@rocky ~]$ ls -ld test
drwxr-xr-x. 2 mail mail 6 Oct 25 11:18 test

▪ Again, "mail" is mapped through global /etc/{passwd,group} to local UID=8, GID=12
[nobody@rocky ~]$ grep mail /etc/{passwd,group}
/etc/passwd:mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
/etc/group:mail:x:12:postfix

 In the global namespace, the folder is seen with the global UID/GID
[bednarek@rocky ~]$ ls -ld test
drwxr-xr-x. 2 100008 100012 6 Oct 25 11:18 test

▪ If the local UID=8, GID=12 were not mapped, the chown above would have failed

Linux namespaces – root-full vs. root-less containers

28NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Root-full container
▪ The initial process of the container runs with uid/gid == 0 (as seen inside the

container)
▪ It also has all capabilities (wrt. objects in its namespaces)

 Created by root (sudo) user (of the parent namespace)
▪ 1:1 uid/gid mapping or no user namespace at all

▪ Dangerous, the only scenario available in the past

 Created by a non-privileged user
▪ uid/gid 0 in the container maps to the creator user/group

▪ other uids/gids in the container (if any) map to the creator's subuid/subgid set

 Root-less container
▪ All the processes of the container run with the same uid/gid != 0

▪ They have no capabilities (therefore unable to create/impersonate other uids/gids)

 Created by root (sudo) user (of the parent namespace)
▪ The only uid/gid mapped to a selected user/group

 Created by a non-privileged user
▪ The only uid/gid mapped to the creator user/group

Containers (Linux)

29NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The namespaces and cgroups are relatively old mechanism of the kernel

 Some parts were significantly redefined or extended more recently

▪ PIDS, capabilities, ...

 Many container systems originally used older, less general kernel mechanisms

▪ Instead of using the mechanism of owner namespaces, docker does this:

▪ docker executable forwards the commands via a named pipe to the dockerd daemon

▪ dockerd daemon uses root privileges to manipulate the namespaces and cgroups

▪ Consequently, the safety of the system relies on the correctness of dockerd

▪ However, dockerd was later reimplemented to more modern techniques

▪ e.g. using crun/runc to actually start containers, not requiring root privileges

 Red Hat reacted by implementing podman, which implements docker
commands through the modern kernel mechanisms, bypassing any daemon

Containers (Linux)

30NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 There are conflicting philosophies with respect to containers

 Docker, Inc.: Containers are lightweight entities
▪ A container shall typically contain only one process

▪ Any connection between processes shall be handled outside the containers
▪ Use Kubernetes to orchestrate these connections

▪ To update the software in a container, drop the container and start another
▪ Due to robustness and load-balancing requirements, the container must survive this anyway

 Red Hat, Inc.: Containers are like computers
▪ Many applications consists of several processes

▪ apache, mysql, java, cron, ...

▪ The applications are published with a sophisticated installation script
▪ Nobody is going to rewrite installation scripts into Kubernetes configurations

▪ Installation scripts shall work inside containers

▪ Typical installation procedures shall work inside containers:
$ sudo yum install gcc
$ sudo yum upgrade
$ sudo systemctl enable sshd

Containers (Linux)

31NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 PID namespace

▪ This happens in a lightweight container without pid namespace, executing "bash":
systemctl status

Failed to connect to bus: Operation not permitted

sudo systemctl status

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: error in /etc/sudo.conf, line 0 while loading plugin "sudoers_policy"

sudo: /usr/libexec/sudo/sudoers.so must be owned by uid 0

sudo: fatal error, unable to load plugins

ls /etc/sudo.conf -ln

-rw-r-----. 1 65534 65534 1786 Apr 24 2020 /etc/sudo.conf

grep root\\\|65534 /etc/passwd

root:x:0:0:root:/root:/bin/bash

nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin

▪ The process PID=1 has two special roles
▪ it controls daemons – published via a named pipe as the systemctl command

▪ it collects zombies

▪ Inside a typical container, PID=1 is the main executable, often a shell
▪ it cannot respond to the systemctl request

▪ sudo refuses to work because the true owner of sudo.conf does not exist inside the USER
namespace of the container

▪ the root of the container namespace is not configured to have sufficient privileges

Linux namespaces – unshare utility - pid namespace

32NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

▪ Creating a new pid namespace - unsuccessful attempts
[bednarek@rocky ~]$ unshare -p
unshare: unshare failed: Operation not permitted

▪ Creating any namespace other than user namespace requires CAP_SYS_ADMIN

▪ We can acquire this capability by entering a new user namespace (here with -r)
[bednarek@rocky ~]$ unshare -r -p
-bash: fork: Cannot allocate memory
-bash-5.1# echo $$
373218

▪ A pid namespace requires a really new process, not just unsharing
[bednarek@rocky ~]$ unshare -r -p --fork
basename: missing operand
Try 'basename --help' for more information.
[root@rocky ~]# echo $$
1

▪ We are in the new pid namespace with PID=1
[root@rocky ~]# ps

PID TTY TIME CMD
344957 pts/3 00:00:00 bash
373102 pts/3 00:00:00 unshare
373103 pts/3 00:00:00 bash
373148 pts/3 00:00:00 ps

▪ But ps is implemented using /proc, so we actually see the global processes

▪ Our bash with local PID=1 maps to global PID=373103

Linux namespaces – unshare utility - pid namespace

33NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

▪ Creating a new pid namespace - the correct way
[bednarek@rocky ~]$ unshare -r -p --fork --mount-proc

▪ The --mount-proc switch mounts a new instance of procfs to /proc

▪ Before that, the utility created a new mount namespace
[root@rocky ~]# echo $$
1

▪ Our bash is running with local PID=1
[root@rocky ~]# ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 0 33 1 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ We can't see any other processes than the PID=1 and the ps utility itself

 This is the minimum that a modern container system must do
▪ At least when system container (with PID=1 and UID=0) is required

▪ Create a user namespace and map UID=0 to the parent user

▪ Create a mount namespace
▪ Real containers would map their own filesystems here

▪ Fork a new process into a new pid namespace
▪ Mount a new procfs into /proc

▪ Real containers usually also create a network namespace

eff. uid

unshare -r -p --fork --mount-proc

34NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

USER

USER

p
ar

en
t

PID

PID

p
ar

en
t

MOUNT

MOUNT

co
p

y

NETWORK

owned by

parent
proc

child
proc

1

/proc1111 2222

0 1000

/

/proc/

eth0loopback

0

OS kernel

network
root-NS

PA1

Containerization – without network namespaces

35

 Containers in host network namespace

 Containers share network stack with the
host

▪ Potential port number conflicts

▪ Unsafe

 Called host mode in docker/podman

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

eth0

OS kernel

network NS-1

network
root-NS

network NS-2

PA1

Containerization – network namespaces

36

 Network namespaces are created empty

 Devices, routing and firewall rules are
bound to a NS

 veth – a pair of virtual Ethernet devices

 packets sent through one side are received
on the other

 usually installed across network NS
boundary

▪ privileges required in both namespaces

▪ non-root users must provide network
access differently

 More than one container may reside in
the same network namespace

 Shared network address

▪ Potentially conflicting ports

 Example: podman pod

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

veth2alo1 veth1a

eth0

lo2

veth2bveth1b

OS kernel

network NS-1

network
root-NS

network NS-2

PA1

Containerization – network namespaces

37

 Network namespaces are created empty
 Devices, routing and firewall rules are bound

to a NS

 veth – a pair of virtual Ethernet devices
 packets sent through one side are received on

the other

 The outer side of the veth pair
 Bridge mode of docked/podman

▪ Virtual bridge + routing involved

▪ Standard parts of linux kernel

 Virtual bridge
▪ All outer sides of the veth pairs connected by a

virtual bridge

▪ Represented in the root NS as cbr0

 Router + NAT
▪ Packets are routed between cbr0 and eth0

▪ Routing with NAT (usually the default)

▪ Containers have private addresses

▪ External access requires port forwarding

▪ Routing without NAT

▪ Containers have public addresses

▪ External access may be blocked by host
firewall

 Visibility between containers
▪ Configured by host or NS firewall

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

veth2alo1 veth1a

cbr0

eth0

lo2

veth2bveth1b

NAT

OS kernel

network NS-1

network
root-NS

network NS-2

PA1

Containerization – network namespaces for non-privileged creators

38

 Network namespaces are created empty

 Devices, routing and firewall rules are
bound to a NS

 Non-privileged creator cannot create a veth
pair

▪ due to insufficient privilege in the root NS

 Non-privileged creator can create a TAP
adapter

▪ using root privileges in the child NS

▪ the TAP adapter is connected to user-space
stack

 slirp4netns

▪ an utility developed from slirp (1996)

▪ not seriously secure!

▪ receive/send Ethernet packets via a TAP

▪ send/receive unencapsulated TCP/UDP traffic

▪ using unprivileged TCP/UDP ports

▪ cannot use port < 1024

▪ in effect, similar to a NAT router

▪ but implemented quite differently

▪ no container-to-container traffic

▪ root-less container systems invoke this
daemon automatically

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

tap2lo1 tap1

eth0

lo2

slirp4netnsslirp4netns

TCP/UDP sockets

TCP/UDP traffic
encapsulated in Ethernet frames
received/sent through file descriptor

xkcd 2347

39NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers (Linux)

40NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The userspace layer of containers

 docker, podman, ...

 An image is essentially a read-only filesystem

▪ Plus some defaults and interface declarations

 A container is an image plus

▪ A writable layer above the image filesystem

▪ This is destroyed when the container is deleted (but survives stops)

▪ A set of mounts used to access some folders outside the container

▪ This can survive deleting and recreating the container (e.g., from an updated image)

▪ A set of ports mapped via virtual networks to the outside world

 A running container is

▪ A set of processes living in the namespace of the container

▪ Created by forking from a single process, usually the ENTRYPOINT defined in the image

▪ Optionally, stdin/stdout/stderr pipes attached to the processes

Container image

41NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Container image
 Logically, a filesystem that will be visible to a container when it starts

▪ Additional folders are usually mounted into that filesystem
▪ Virtual filesystems, e.g. procfs mounted at /proc

▪ Selected host-filesystem folders to be read/written by the container

 Theoretically, the container may mount large parts of the host filesystem
▪ E.g. all the operating system executables like /usr/bin

▪ This is not the way how docker was designed to work
▪ The image usually contains a complete copy of an operating system (except the kernel)

 Images are large (minimum bare OS = ~30 MB compressed)
▪ Significant cost of storing and transporting images

 Many images are based on the same OS version
▪ OS+DataBase vs. OS+WebServer

▪ Significant parts of the filesystem are identical

 Identical parts shall be shared between images
▪ Implemented by creating and storing images by layers

▪ Not the best optimization possible

▪ ReadHat+Oracle shares nothing with Ubuntu+Oracle

Containers (Linux)

42NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The image is created by adding layers
▪ To another image or to an empty filesystem ("FROM SCRATCH")

 Each layer can be
 A set of files copied from elsewhere

 The result of a command executed inside the partially built container
▪ A temporary container started as if the previous layers formed a complete image

▪ Anything written by the command is stored in a writable layer
▪ Files/folders may be added/modified/removed

▪ When done, the writable layer is frozen to read-only

 Each layer is
 Identified by its checksum

 Usually stored/distributed as single file
▪ Often using tar+gzip

▪ The base layer may be taken directly from an OS distribution

 Layers of an image linked together by metadata files
 Usually conformant to the Open-Container-Initiative (OCI) standard

Containers (Linux)

43NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Creating the filesystem from an image
 When a container is created and/or started

▪ Including the case of temporary containers during the creation of the image

 The tar(+gzip) format is too slow for execution
▪ Each layer is unzipped and untarred into:

▪ A subtree in the host filesystem, or

▪ A filesystem built inside a file in the host filesystem

 The layers (including the top-most writable one) must be combined:
 Flattening - before starting the container

▪ Applying changes by subsequent layers onto the base layer

▪ Slow container creation, high disk-space consumption, fast container execution

▪ Cannot easily extract the changes made by the container into a new layer

 Union filesystem – virtually, when the container runs
▪ A filesystem combining two other filesystems (e.g. overlayfs)

▪ Whiteout: deleting in the upper filesystem hides a file from the lower filesystem

▪ A container manager may share a read-only layer in more than one container

▪ Quicker container creation, low disk-space consumption, slower container execution

Containers (Linux)

44NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Union filesystem

 A filesystem combining two other filesystems (e.g. overlayfs)

 Each layer may be
 A subtree of a physical (host) file system

 A separate file system over a virtual block device

▪ Usually implemented in a binary file

 Overlay FS, layer filesystems and virtual block devices
 Implemented in kernel when set up by privileged users

▪ Permissions and owner UID/GIDs stored within FS

▪ Container images cannot be shared between different host users

 Implemented in userspace when set up by root-less users

▪ Using Linux FUSE - FS requests redirected from kernel to user processes

▪ Permission checking delegated to the userspace component

▪ Container images may be shared if the layer FS is container-aware

FROM debian:trixie-slim

ENV NGINX_VERSION 1.29.2
ENV NJS_VERSION 0.9.3
ENV NJS_RELEASE 1~trixie
ENV PKG_RELEASE 1~trixie
ENV DYNPKG_RELEASE 1~trixie

RUN set -x \
&& groupadd --system --gid 101 nginx \
&& useradd --system --gid nginx --uid 101 nginx \
&& apt-get update \
&& apt-get install curl xsltproc nginx \

… and a hundred of other statements

COPY docker-entrypoint.sh

ENTRYPOINT ["/docker-entrypoint.sh"]
EXPOSE 80
STOPSIGNAL SIGQUIT
CMD ["nginx", "-g", "daemon off;"]

 Dockerfile
 script to create a container image

▪ placed at the source folder

 direct filesystem modifications
▪ FROM - base image
▪ COPY - copy from source folder

 indirect filesystem modifications
▪ RUN

▪ create a writable layer on top
▪ run the specified command in

WORKDIR
▪ freeze the writable layer

 setting startup process
▪ ENV – process environment

▪ For the next RUN or ENTRYPOINT

▪ ENTRYPOINT – process command

▪ CMD – default arguments
▪ May be modified when container starts

 metadata
▪ VOLUME – mount points

▪ EXPOSE – port list

▪ STOPSIGNAL – container stop

Creating images by docker

45NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 docker build

 read Dockerfile and other files

 pull base image from a registry

 produce container image

 docker image push/pull

 push/pull image to/from a registry

 docker create

 create a writable layer above an image

 link mount points as specified

 connect ports as specified

 the result is a stopped container

 docker start

 start the startup process

 docker exec

 implant another process into the
container namespaces

 docker stop/kill

 image

 a combined filesystem

▪ sequence of layers (binary blobs)

▪ multiple images may share (lower)
layers if created by the same
commands

 environment, startup command,
mounts, ports

 created by freezing a container

 container
 similar to an image

▪ the top filesystem layer is writable

 may be running as a subtree of
processes

 namespaces and cgroups ensure
the required execution
environment

docker

46NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers and the outside world

47NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Mount-points (VOLUME)
 When started, the internal mount-points are linked to files/folders on the host

▪ Specified by options for docker create etc.

 Main purpose: Long-term persistency of data

▪ Software in containers is usually updated by creating a new container from an updated
image
▪ The updated image may be created from the same Dockerfile

▪ FROM and RUN commands may produce different outcome

▪ The writable layer of a container cannot be reattached to different underlying image

 Ports (EXPOSE)
 The ports where the servers inside the container listen

▪ Specified host NIC ports are forwarded (through NAT) to the EXPOSEd ports (associated to
a virtual NIC of the container)
▪ Specified by options for docker create etc.

▪ Alternatively, the container may directly use the host NIC (deprecated)

 IPC
 Host’s named pipes, devices etc. may be exposed to the container

 stdin/stdout/stderr of the container may be connected to host

▪ docker run -it

services:
proxy:

image: nginx
volumes:
- type: bind

source: ./proxy/nginx.conf
target: /etc/nginx/conf.d/default.conf
read_only: true

ports:
- 8080:80

depends_on:
- backend

backend:
build:
context: backend

volumes:
- db-data:/var/lib/postgresql/data

volumes:
db-data:

 docker-compose

 Built above docker

 Config: docker-compose.yaml

 Repository operations

▪ Get image from repository

▪ Build image

 Connecting containers to host

▪ volumes, ports

 Combining more containers
together (services)

▪ Dependences

▪ Healthcheck, restart

docker-compose

48NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

	Slide 1: Containers
	Slide 2: Containers
	Slide 3: Subsystems in Microsoft Windows
	Slide 4: Microsoft Windows NT 3.1 (1993)
	Slide 5: Containers in Windows
	Slide 6: Containers in Windows
	Slide 7: Containers (Linux)
	Slide 8: Containerization
	Slide 9: Containerization – machines vs. containers
	Slide 10: Linux namespaces
	Slide 11: Linux namespaces
	Slide 12: Linux namespaces
	Slide 13: Process (Linux)
	Slide 14: Linux namespaces
	Slide 15: The effect of clone on major namespaces
	Slide 16: The effect of clone on major namespaces
	Slide 17: Linux namespaces
	Slide 18: Linux procfs
	Slide 19: Linux namespaces – capabilities
	Slide 20: Linux namespaces – mapping uids and gids
	Slide 21: Linux namespaces – unshare utility
	Slide 22: unshare -c
	Slide 23: Linux namespaces – unshare utility
	Slide 24: unshare -r
	Slide 25: Linux namespaces – unshare utility
	Slide 26: unshare -u; newuidmap ...
	Slide 27: Linux namespaces – unshare utility
	Slide 28: Linux namespaces – root-full vs. root-less containers
	Slide 29: Containers (Linux)
	Slide 30: Containers (Linux)
	Slide 31: Containers (Linux)
	Slide 32: Linux namespaces – unshare utility - pid namespace
	Slide 33: Linux namespaces – unshare utility - pid namespace
	Slide 34: unshare -r -p --fork --mount-proc
	Slide 35: Containerization – without network namespaces
	Slide 36: Containerization – network namespaces
	Slide 37: Containerization – network namespaces
	Slide 38: Containerization – network namespaces for non-privileged creators
	Slide 39: xkcd 2347
	Slide 40: Containers (Linux)
	Slide 41: Container image
	Slide 42: Containers (Linux)
	Slide 43: Containers (Linux)
	Slide 44: Containers (Linux)
	Slide 45: Creating images by docker
	Slide 46: docker
	Slide 47: Containers and the outside world
	Slide 48: docker-compose

