Jiny pohled na cache

NPRGO54 High Performance Software Development- 2016/2017 David Bednarek 1

Algoritmy a cache

v/

» Pristupy do paméti v algoritmech jsou dvou druhu
» S predvidatelnou adresou

= Linedrni prichody polem
for (i =0; 1 < N; ++ i) { /*...*¥/ a[i] /*...*/ }
= Linearni prichody s vétsim skokem
for (j =0; j<M; ++ j) for (i =0; 1 < N; ++ 1i) { /*...*/ a[i]l[j] /*...*/ }
» S "nahodnou" adresou

= Hashovaci tabulky
for (i =0; 1 <N; ++1i) { /*...*/ a[hash(d[i])] /*...*/ }

Bucket-sort
for (i =0; 1 < N; ++ i) { /*...*/ a[b[i]] /*...*/ }

Binarni vyhledavani
while (/*...*/) { if (a[j] > /*...*/) j = /*...*%/; else j = /*...*/; }

Spojoveé struktury
while (p !'=0) { /*...*/ p = p->next; /*...*/ }

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 2

Algoritmy a cache

v

» Pristupy s predvidatelnou adresou

Efekt radku cache: Husté linearni prichody maji dobré hit ratio

v Vv

Write buffers: Zapisy obvykle nezdrzuji

v

Hardware prefetching

= procesor detekuje linearni prichody a nacitd data do L1 predem

v

Software prefetching

= prekladac generuje instrukce pro pristup k datiim predem
= béZné instrukce pro ¢teni - vyzaduji jistotu pfristi iterace
= specialni instrukce pro spekulativni Cteni - potlacené vyjimky
= totéZ mlze udélat programator rucné
» u dnesnich procesorli/prekladacli nebyva zapotiebi

» Latence pfristupu se skryje paralelnim vykonavanim jiné uzitecné Cinnosti
» Rozhoduje propustnost sbérnic pameét-cache-ALU (bandwidth)

= Algoritmy se optimalizuji na nejlepsi vyuziti dané propustnosti

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 3

Algoritmy a cache

v

» Pristupy s "nahodnou" adresou

» Adresa nezavisla na predchozi iteraci

Latenci pristupu lze skryt paralelizaci
Nékdy to dokaze sam prekladac

Hashovaci tabulky
for (1 =0; i < N-1; ++ 1) { x = hash(d[i+1]); /*...*/ v /*...*/; v = a[x]; }

Bucket-sort
for (i=0; i< N;i+=2){/*...*/ a[b[i]] /*...*/ a[b[i+1]] /*...*/ }

» Adresa zavisla na predchozi iteraci (loop-carried dependence)

Paralelizovat neni s ¢im

Rozhoduje latence pristupu

Binarni vyhledavani
while (/*...*%/) { if (a[j] > /*...*/) j = /*...*/; else j = /*...*/; }

Spojoveé struktury
while (p !'=0) { /*...*/ p = p->next; /*...*/ }

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 4

Algoritmy a cache

» Adresa zavisla na predchozi iteraci (loop-carried dependence)
» Paralelizovat neni s ¢im
» Vyzaduje globalni Upravu algoritmu (zmény rozhrani funkci)
= VVymeéna vzajemné vnorenosti cykl

loop reversal; obecnéji afinni transformace cyklt (loop skewing)

Vyzaduje stabilni pocet iteraci vnitrniho cyklu

Binarni vyhledavani
for (1 =0; i < N; ++ i) bsearch(a, M, b[i]);

upraveno na

bsearch_many(a, M, b, N);

» U nevhodnych datovych struktur paralelizovat nelze
= Prekazkou je nevyvazenost poctu iteraci
» Paralelizace zhorsuje lokalitu pristupl do paméti

= Skryti latence za cenu snizeného cache hit ratio

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 5

Idealni algoritmus

» Celkova architektura ,idealniho algoritmu®

» Jadro ulohy pracujici v registrech
= poduloha do velikosti 28 B(x86)/120 B(x64)/512 B(AVX)/2048 B(AVX512)
= Pouze lokalni proménné, pokud mozno zadné pole
= Proménné ¢teny z paméti na zacatku/zapisovany do paméti na konci
= Videadlnim pripadé SIMD instrukce
» Podulohy do velikosti 8-16KB

= Data se vejdou do L1 (s ohledem na hyperthreading)

= Data podulohy mohou byt v paméti mirné nesouvisla
Kazdy blok ndsobkem 64 B (cache line)
Jsou-li bloky vzdalenéjsi nez 4 KB, pak <100 blokt (TLB1)

= Poduloha resena iterativné nad jadrem ulohy
Rekurzivni reseni miva pfilis velky overhead
Iterace umoznuje prefetch

» Ulohy vétsi neZ ~16 KB

= Redeny rekurzivné metodami Cache-Oblivious algoritm(
Obvykle se déli na dvé podulohy o polovicnim poctu operaci
Kazda poduloha ma vétsi nez polovicni spotrebu paméti
Vybira se takovy zplsob déleni, ktery minimalizuje pamétovy prekryv podaloh
Okolo 16 KB se rekurze nahradi iteraci podulohy

= Data kazdé podulohy by méla mit maly pocet bloktd (problém TLB)

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 6

Idealni algoritmus

» Rekurzivni déleni na podulohy
= Nejjednodussi je déleni na poloviny
= VétSinou je nutné stfidat smeéry déleni
= Kazda poduloha ma vétsi nez polovicni spotrebu paméti
» Vybird se takovy zpUsob déleni, ktery minimalizuje pamétovy prekryv poduloh
= Tim je minimalizovan pamétovy priimét podulohy
= Na poradi zalezi
» Prechody z jedné podulohy do druhé zpUsobuji vyménu obsahu cache
= Chovani zavisi na poradi operaci uvnitf poduloh
» Rekurzivni déleni je pouze mechanismus volby poradi zakladnich operaci

= Krivka vyplnujici prostor iteraci

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 7

Idealni algoritmus

=K¢
p
oo
T O

TITIOTY0

v
W

» Krivky vypliujici prostor iteraci
Z-krivka

» Lze generovat z pofadového Cisla stfidanim bitd

- Casto méni vice neZ jednu soufadnici

Hilbertova krivka

= Pohyb vidy pouze na sousedni pole
= Komplikované generovani

Zjednoduseni Hilbertovy krivky

= Sousednost neni vétSinou nutn3,
staCi zména pouze v jedné dimenzi

= Generovana Grayovym kdédem a naslednym stridanim bitd

z =1i" (i< 1)

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek

7/77/77M/7/7ﬁ

7z 4/4,&’4
ZZZ/Z

Algoritmy a cache - dalsi pohled

» Pristup na nahodné adresy

» Schopnost pristupu na nahodné adresy je pro algoritmus klicova
= bsearch, hash,...
» Nalezeni prislusné bunky paméti je soucasti uzitecného vykonu algoritmu
= Program vykonava uzitecnou praci pomoci adresnich dekodéri paméti
= Adresni dekodéry jsou v paméti porad - zaméstnejme je!
Pamét ma nezavisle pracujici bloky - zaméstnejme je paralelné

v

» Pristup na predvidatelné adresy
» Predvidatelny (linearni) pristup nevyuziva schopnosti RAM

= Adresni dekodéry opakované dekdduji podobné adresy
= Zbytecny hardware, zbytecnd spotrfeba energie

» Architektura RAM stroje je pro takové algoritmy nadbytecna
= BéZné programovaci jazyky jsou této architekture podrizeny

» Vystacili bychom s Turingovskou paskou
= Neumime ji fyzicky realizovat
= Neumime v tomto prostredi programovat

NPRGO054 High Performance Software Development- 2016/2017 David Bednérek 9

	Slide 1: Jiný pohled na cache
	Slide 2: Algoritmy a cache
	Slide 3: Algoritmy a cache
	Slide 4: Algoritmy a cache
	Slide 5: Algoritmy a cache
	Slide 6: Ideální algoritmus
	Slide 7: Ideální algoritmus
	Slide 8: Ideální algoritmus
	Slide 9: Algoritmy a cache - další pohled

