
1NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Jiný pohled na cache

Algoritmy a cache

2NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Přístupy do paměti v algoritmech jsou dvou druhů

 S předvídatelnou adresou

▪ Lineární průchody polem

for (i = 0; i < N; ++ i) { /*...*/ a[i] /*...*/ }

▪ Lineární průchody s větším skokem

for (j = 0; j < M; ++ j) for (i = 0; i < N; ++ i) { /*...*/ a[i][j] /*...*/ }

 S "náhodnou" adresou

▪ Hashovací tabulky

for (i = 0; i < N; ++ i) { /*...*/ a[hash(d[i])] /*...*/ }

▪ Bucket-sort

for (i = 0; i < N; ++ i) { /*...*/ a[b[i]] /*...*/ }

▪ Binární vyhledávání

while (/*...*/) { if (a[j] > /*...*/) j = /*...*/; else j = /*...*/; }

▪ Spojové struktury

while (p != 0) { /*...*/ p = p->next; /*...*/ }

Algoritmy a cache

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Přístupy s předvídatelnou adresou

 Efekt řádku cache: Husté lineární průchody mají dobré hit ratio

 Write buffers: Zápisy obvykle nezdržují

 Hardware prefetching

▪ procesor detekuje lineární průchody a načítá data do L1 předem

 Software prefetching

▪ překladač generuje instrukce pro přístup k datům předem

▪ běžné instrukce pro čtení - vyžadují jistotu příští iterace

▪ speciální instrukce pro spekulativní čtení - potlačené výjimky

▪ totéž může udělat programátor ručně

▪ u dnešních procesorů/překladačů nebývá zapotřebí

 Latence přístupu se skryje paralelním vykonáváním jiné užitečné činnosti

 Rozhoduje propustnost sběrnic paměť-cache-ALU (bandwidth)

▪ Algoritmy se optimalizují na nejlepší využití dané propustnosti

Algoritmy a cache

4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Přístupy s "náhodnou" adresou

 Adresa nezávislá na předchozí iteraci

▪ Latenci přístupu lze skrýt paralelizací

▪ Někdy to dokáže sám překladač

▪ Hashovací tabulky

for (i = 0; i < N-1; ++ i) { x = hash(d[i+1]); /*...*/ v /*...*/; v = a[x]; }

▪ Bucket-sort

for (i = 0; i < N; i += 2) { /*...*/ a[b[i]] /*...*/ a[b[i+1]] /*...*/ }

 Adresa závislá na předchozí iteraci (loop-carried dependence)

▪ Paralelizovat není s čím

▪ Rozhoduje latence přístupu

▪ Binární vyhledávání

while (/*...*/) { if (a[j] > /*...*/) j = /*...*/; else j = /*...*/; }

▪ Spojové struktury

while (p != 0) { /*...*/ p = p->next; /*...*/ }

Algoritmy a cache

5NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Adresa závislá na předchozí iteraci (loop-carried dependence)

 Paralelizovat není s čím

 Vyžaduje globální úpravu algoritmu (změny rozhraní funkcí)

▪ Výměna vzájemné vnořenosti cyklů

▪ loop reversal; obecněji afinní transformace cyklů (loop skewing)

▪ Vyžaduje stabilní počet iterací vnitřního cyklu

▪ Binární vyhledávání

for (i = 0; i < N; ++ i) bsearch(a, M, b[i]);

▪ upraveno na

bsearch_many(a, M, b, N);

 U nevhodných datových struktur paralelizovat nelze

▪ Překážkou je nevyváženost počtu iterací

 Paralelizace zhoršuje lokalitu přístupů do paměti

▪ Skrytí latence za cenu sníženého cache hit ratio

Ideální algoritmus

6NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Celková architektura „ideálního algoritmu“
 Jádro úlohy pracující v registrech

▪ podúloha do velikosti 28 B(x86)/120 B(x64)/512 B(AVX)/2048 B(AVX512)

▪ Pouze lokální proměnné, pokud možno žádné pole

▪ Proměnné čteny z paměti na začátku/zapisovány do paměti na konci
▪ V ideálním případě SIMD instrukce

 Podúlohy do velikosti 8-16KB
▪ Data se vejdou do L1 (s ohledem na hyperthreading)
▪ Data podúlohy mohou být v paměti mírně nesouvislá

▪ Každý blok násobkem 64 B (cache line)
▪ Jsou-li bloky vzdálenější než 4 KB, pak <100 bloků (TLB1)

▪ Podúloha řešena iterativně nad jádrem úlohy
▪ Rekurzivní řešení mívá příliš velký overhead
▪ Iterace umožňuje prefetch

 Úlohy větší než ~16 KB
▪ Řešeny rekurzivně metodami Cache-Oblivious algoritmů

▪ Obvykle se dělí na dvě podúlohy o polovičním počtu operací
▪ Každá podúloha má větší než poloviční spotřebu paměti
▪ Vybírá se takový způsob dělení, který minimalizuje paměťový překryv podůloh
▪ Okolo 16 KB se rekurze nahradí iterací podúlohy

▪ Data každé podúlohy by měla mít malý počet bloků (problém TLB)

Ideální algoritmus

7NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Rekurzivní dělení na podúlohy

▪ Nejjednodušší je dělení na poloviny

▪ Většinou je nutné střídat směry dělení

▪ Každá podúloha má větší než poloviční spotřebu paměti

▪ Vybírá se takový způsob dělení, který minimalizuje paměťový překryv podúloh

▪ Tím je minimalizován paměťový průmět podúlohy

▪ Na pořadí záleží

▪ Přechody z jedné podúlohy do druhé způsobují výměnu obsahu cache

▪ Chování závisí na pořadí operací uvnitř podúloh

 Rekurzivní dělení je pouze mechanismus volby pořadí základních operací

▪ Křivka vyplňující prostor iterací

Ideální algoritmus

8NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Křivky vyplňující prostor iterací

▪ Z-křivka

▪ Lze generovat z pořadového čísla střídáním bitů

▪ Často mění více než jednu souřadnici

▪ Hilbertova křivka

▪ Pohyb vždy pouze na sousední pole

▪ Komplikované generování

▪ Zjednodušení Hilbertovy křivky

▪ Sousednost není většinou nutná,
stačí změna pouze v jedné dimenzi

▪ Generována Grayovým kódem a následným střídáním bitů

z = i ^ (i << 1)

Algoritmy a cache - další pohled

9NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Přístup na náhodné adresy
 Schopnost přístupu na náhodné adresy je pro algoritmus klíčová

▪ bsearch, hash,...

 Nalezení příslušné buňky paměti je součástí užitečného výkonu algoritmu
▪ Program vykonává užitečnou práci pomocí adresních dekodérů paměti

▪ Adresní dekodéry jsou v paměti pořád - zaměstnejme je!

▪ Paměť má nezávisle pracující bloky - zaměstnejme je paralelně

 Přístup na předvídatelné adresy
 Předvídatelný (lineární) přístup nevyužívá schopnosti RAM

▪ Adresní dekodéry opakovaně dekódují podobné adresy
▪ Zbytečný hardware, zbytečná spotřeba energie

 Architektura RAM stroje je pro takové algoritmy nadbytečná
▪ Běžné programovací jazyky jsou této architektuře podřízeny

 Vystačili bychom s Turingovskou páskou
▪ Neumíme ji fyzicky realizovat

▪ Neumíme v tomto prostředí programovat

	Slide 1: Jiný pohled na cache
	Slide 2: Algoritmy a cache
	Slide 3: Algoritmy a cache
	Slide 4: Algoritmy a cache
	Slide 5: Algoritmy a cache
	Slide 6: Ideální algoritmus
	Slide 7: Ideální algoritmus
	Slide 8: Ideální algoritmus
	Slide 9: Algoritmy a cache - další pohled

